Heat flux in the Langevin model for two particles
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 39-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analytical representation for the heat flux is obtained on the basis of the constructed solution in a one-dimensional harmonic model for two particles. At $t\rightarrow\infty$, the amplitude asymptotic behavior of the flow passing through the particle is shown to be determined by the temperature difference between the left and right heat reservoirs, between which the system is located. The dynamic behavior of the thermal characteristic is oscillating in time; its oscillation period is set by the parameter of the system.
@article{DVMG_2021_21_1_a2,
     author = {M. A. Guzev and A. A. Dmitriev},
     title = {Heat flux in the {Langevin} model for two particles},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a2/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - A. A. Dmitriev
TI  - Heat flux in the Langevin model for two particles
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 39
EP  - 44
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a2/
LA  - ru
ID  - DVMG_2021_21_1_a2
ER  - 
%0 Journal Article
%A M. A. Guzev
%A A. A. Dmitriev
%T Heat flux in the Langevin model for two particles
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 39-44
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a2/
%G ru
%F DVMG_2021_21_1_a2
M. A. Guzev; A. A. Dmitriev. Heat flux in the Langevin model for two particles. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a2/

[1] G. E. Uhlenbeck, L. S. Ornstein, “On the Theory of the Brownian Motion”, Phys. Rev., 36 (1930), 823-–841 | DOI | Zbl

[2] S. Lepri, R. Livi, A. Politi, “Thermal conduction in classical low-dimensional lattices”, Physics Reports, 377 (2003), 1–80 | DOI | MR

[3] F. Bonetto, J. L. Lebowitz, J. Lukkarinen, “Fourier's Law for a Harmonic Crystal with Self-Consistent Stochastic Reservoirs”, Journal of Statistical Physics, 116 (2004), 783–-813 | DOI | MR | Zbl

[4] A. Dhar, R. Dandekar, “Heat transport and current fluctuations in harmonic crystals”, Physica A: Statistical Mechanics and its Applications, 418 (2015), 49–64 | DOI | MR | Zbl

[5] A. M Krivtsov, “Rasprostranenie tepla v beskonechnom odnomernom garmonicheskom kristalle”, DAN, 464:2 (2015), 162–166 | MR

[6] M. A. Guzev, A. A. Dmitriev, “Ostsillyatsionno-zatukhayuschee povedenie temperatury v kristalle”, Dalnevostochnyi matem. zhurnal, 17:2 (2017), 170–179 | MR | Zbl