Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2021_21_1_a2, author = {M. A. Guzev and A. A. Dmitriev}, title = {Heat flux in the {Langevin} model for two particles}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {39--44}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a2/} }
M. A. Guzev; A. A. Dmitriev. Heat flux in the Langevin model for two particles. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 39-44. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a2/
[1] G. E. Uhlenbeck, L. S. Ornstein, “On the Theory of the Brownian Motion”, Phys. Rev., 36 (1930), 823-–841 | DOI | Zbl
[2] S. Lepri, R. Livi, A. Politi, “Thermal conduction in classical low-dimensional lattices”, Physics Reports, 377 (2003), 1–80 | DOI | MR
[3] F. Bonetto, J. L. Lebowitz, J. Lukkarinen, “Fourier's Law for a Harmonic Crystal with Self-Consistent Stochastic Reservoirs”, Journal of Statistical Physics, 116 (2004), 783–-813 | DOI | MR | Zbl
[4] A. Dhar, R. Dandekar, “Heat transport and current fluctuations in harmonic crystals”, Physica A: Statistical Mechanics and its Applications, 418 (2015), 49–64 | DOI | MR | Zbl
[5] A. M Krivtsov, “Rasprostranenie tepla v beskonechnom odnomernom garmonicheskom kristalle”, DAN, 464:2 (2015), 162–166 | MR
[6] M. A. Guzev, A. A. Dmitriev, “Ostsillyatsionno-zatukhayuschee povedenie temperatury v kristalle”, Dalnevostochnyi matem. zhurnal, 17:2 (2017), 170–179 | MR | Zbl