Difference methods for solving nonlocal boundary value problems for fractional-order differential convection-diffusion equations with memory effect
Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, in a rectangular domain, we study nonlocal boundary value problems for one-dimensional in space differential equations of convection-diffusion of fractional order with a memory effect, in which the unknown function appears in the differential expression and at the same time appears under the integral sign. The emergence of the integral term in the equation is associated with the need to take into account the dependence of the instantaneous values of the characteristics of the described object on their respective previous values, i.e. the effect of its prehistory on the current state of the system. For the numerical solution of nonlocal boundary value problems, two-layer monotone difference schemes are constructed that approximate these problems on a uniform grid. Estimates of solutions of problems in differential and difference interpretations are derived by the method of energy inequalities. The obtained a priori estimates imply the uniqueness, as well as the continuous and uniform dependence of the solution on the input data of the problems under consideration and, due to the linearity of the problem under consideration, the convergence of the solution of the difference problem to the solution of the corresponding differential problem with the rate $O(h^2+\tau^2)$.
@article{DVMG_2021_21_1_a0,
     author = {M. KH. Beshtokov and M. Z. Khudalov},
     title = {Difference methods for solving nonlocal boundary value problems for fractional-order differential convection-diffusion equations with memory effect},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--25},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a0/}
}
TY  - JOUR
AU  - M. KH. Beshtokov
AU  - M. Z. Khudalov
TI  - Difference methods for solving nonlocal boundary value problems for fractional-order differential convection-diffusion equations with memory effect
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2021
SP  - 3
EP  - 25
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a0/
LA  - ru
ID  - DVMG_2021_21_1_a0
ER  - 
%0 Journal Article
%A M. KH. Beshtokov
%A M. Z. Khudalov
%T Difference methods for solving nonlocal boundary value problems for fractional-order differential convection-diffusion equations with memory effect
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2021
%P 3-25
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a0/
%G ru
%F DVMG_2021_21_1_a0
M. KH. Beshtokov; M. Z. Khudalov. Difference methods for solving nonlocal boundary value problems for fractional-order differential convection-diffusion equations with memory effect. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a0/

[1] K. B. Oldham, J. Spanier, The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, New York, Academic Press, 1974 | MR | Zbl

[2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley and Sons, New York, 1993 | MR | Zbl

[3] I. Podlubny, Fractional differential equations, Academic Press, San. Diego, 1999 | MR | Zbl

[4] V. E. Tarasov, Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii institut kompyuternykh issledovanii, Izhevsk - M., 2011 | MR

[5] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[6] V. V. Uchaikin, Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[7] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1982 | MR | Zbl

[8] S. V. Nerpin, A. F. Chudnovskii, Energo i massoobmen v sisteme pochva rastenie-vozdukh, Gidrometeoizdat, L., 1975

[9] R. R. Nigmatullin, “Osobennosti relaksatsii sistemy s “ostatochnoi” pamyatyu”, Fiz. tverdogo tela, 27:5 (1985), 1583–1585

[10] A. A. Alikhanov, “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math., 219 (2012), 3938–-394 | MR

[11] A. A. Alikhanov, “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys, 280 (2015), 424–-438 | DOI | MR | Zbl

[12] M KH. Beshtokov, “To boundary-value problems for degenerating pseudoparabolic equations with Gerasimov–Caputo fractional derivative”, Russian Mathematic, 62:10 (2018), 1–14 | DOI | MR | Zbl

[13] C. Ji, Z. Z. Sun, “A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation”, Journal of Scientific Computing Russian Mathematic, 64:3 (2014), 959–985 | MR

[14] Y. Yan, Z. Z. Sun, J. Zhang, “Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme the Fractional Sub-diffusion Equation”, Commun. Comput. Phys., 22:4 (2017), 1028–1048 | DOI | MR

[15] G. Gao, A. A. Alikhanov, Z. Z. Sun, “The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for Solving the Time Multi-term and Distributed-Order Fractional Sub-diffusion Equations”, Journal of Scientific Computing, 73:1 (2017), 93–121 | DOI | MR | Zbl

[16] X. M. Gu, T. Zh. Huang, C. C. Ji, B. Carpentieri, A. A. Alikhanov, “Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation”, J. Sci. Comp., 72 (2017), 957–985 | DOI | MR | Zbl

[17] H. Y. Jian, T. Z. Huang, X. L. Zhao, X. L. Zhao, “A fast second-order accurate difference schemes for time distributed-order and Riesz space fractional diffusion equations”, J. Appl. Anal. and Comp., 9:4 (2019), 1028–1048 | MR

[18] M. KH. Beshtokov, “Local and nonlocal boundary value problems for degenerating and nondegenerating pseudoparabolic equations with a Riemann–Liouville fractional derivative”, Differential Equations, 54:6 (2018), 758–774 | DOI | MR | Zbl

[19] M. Kh. Beshtokov, “Kraevye zadachi dlya psevdoparabolicheskogo uravneniya s drobnoi proizvodnoi Kaputo”, Differents. uravneniya, 55:7 (2019), 919–928 | MR | Zbl

[20] M. KH. Beshtokov, V. A. Vodakhova, “Nonlocal boundary value problems for a fractional order convection–diffusion equation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 29:4 (2019), 459–482 | DOI | MR

[21] M. Kh. Beshtokov, F. A. Erzhibova, “K kraevym zadacham dlya integro-differentsialnykh uravnenii drobnogo poryadka”, Matematicheskie trudy, 23:1 (2020), 16–36 | MR

[22] M. KH. Beshtokov, M. Z. Khudalov, “Difference methods of the solution of local and non-local boundary value problems for loaded equation of thermal conductivity of fractional order”, Stability, Control and Differential Games, Springer Nature, 2020

[23] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983

[24] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka, M., 1973