Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2021_21_1_a0, author = {M. KH. Beshtokov and M. Z. Khudalov}, title = {Difference methods for solving nonlocal boundary value problems for fractional-order differential convection-diffusion equations with memory effect}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {3--25}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a0/} }
TY - JOUR AU - M. KH. Beshtokov AU - M. Z. Khudalov TI - Difference methods for solving nonlocal boundary value problems for fractional-order differential convection-diffusion equations with memory effect JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2021 SP - 3 EP - 25 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a0/ LA - ru ID - DVMG_2021_21_1_a0 ER -
%0 Journal Article %A M. KH. Beshtokov %A M. Z. Khudalov %T Difference methods for solving nonlocal boundary value problems for fractional-order differential convection-diffusion equations with memory effect %J Dalʹnevostočnyj matematičeskij žurnal %D 2021 %P 3-25 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a0/ %G ru %F DVMG_2021_21_1_a0
M. KH. Beshtokov; M. Z. Khudalov. Difference methods for solving nonlocal boundary value problems for fractional-order differential convection-diffusion equations with memory effect. Dalʹnevostočnyj matematičeskij žurnal, Tome 21 (2021) no. 1, pp. 3-25. http://geodesic.mathdoc.fr/item/DVMG_2021_21_1_a0/
[1] K. B. Oldham, J. Spanier, The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, New York, Academic Press, 1974 | MR | Zbl
[2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley and Sons, New York, 1993 | MR | Zbl
[3] I. Podlubny, Fractional differential equations, Academic Press, San. Diego, 1999 | MR | Zbl
[4] V. E. Tarasov, Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka, Izhevskii institut kompyuternykh issledovanii, Izhevsk - M., 2011 | MR
[5] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[6] V. V. Uchaikin, Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008
[7] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1982 | MR | Zbl
[8] S. V. Nerpin, A. F. Chudnovskii, Energo i massoobmen v sisteme pochva rastenie-vozdukh, Gidrometeoizdat, L., 1975
[9] R. R. Nigmatullin, “Osobennosti relaksatsii sistemy s “ostatochnoi” pamyatyu”, Fiz. tverdogo tela, 27:5 (1985), 1583–1585
[10] A. A. Alikhanov, “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math., 219 (2012), 3938–-394 | MR
[11] A. A. Alikhanov, “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys, 280 (2015), 424–-438 | DOI | MR | Zbl
[12] M KH. Beshtokov, “To boundary-value problems for degenerating pseudoparabolic equations with Gerasimov–Caputo fractional derivative”, Russian Mathematic, 62:10 (2018), 1–14 | DOI | MR | Zbl
[13] C. Ji, Z. Z. Sun, “A High-Order Compact Finite Difference Scheme for the Fractional Sub-diffusion Equation”, Journal of Scientific Computing Russian Mathematic, 64:3 (2014), 959–985 | MR
[14] Y. Yan, Z. Z. Sun, J. Zhang, “Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme the Fractional Sub-diffusion Equation”, Commun. Comput. Phys., 22:4 (2017), 1028–1048 | DOI | MR
[15] G. Gao, A. A. Alikhanov, Z. Z. Sun, “The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for Solving the Time Multi-term and Distributed-Order Fractional Sub-diffusion Equations”, Journal of Scientific Computing, 73:1 (2017), 93–121 | DOI | MR | Zbl
[16] X. M. Gu, T. Zh. Huang, C. C. Ji, B. Carpentieri, A. A. Alikhanov, “Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation”, J. Sci. Comp., 72 (2017), 957–985 | DOI | MR | Zbl
[17] H. Y. Jian, T. Z. Huang, X. L. Zhao, X. L. Zhao, “A fast second-order accurate difference schemes for time distributed-order and Riesz space fractional diffusion equations”, J. Appl. Anal. and Comp., 9:4 (2019), 1028–1048 | MR
[18] M. KH. Beshtokov, “Local and nonlocal boundary value problems for degenerating and nondegenerating pseudoparabolic equations with a Riemann–Liouville fractional derivative”, Differential Equations, 54:6 (2018), 758–774 | DOI | MR | Zbl
[19] M. Kh. Beshtokov, “Kraevye zadachi dlya psevdoparabolicheskogo uravneniya s drobnoi proizvodnoi Kaputo”, Differents. uravneniya, 55:7 (2019), 919–928 | MR | Zbl
[20] M. KH. Beshtokov, V. A. Vodakhova, “Nonlocal boundary value problems for a fractional order convection–diffusion equation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 29:4 (2019), 459–482 | DOI | MR
[21] M. Kh. Beshtokov, F. A. Erzhibova, “K kraevym zadacham dlya integro-differentsialnykh uravnenii drobnogo poryadka”, Matematicheskie trudy, 23:1 (2020), 16–36 | MR
[22] M. KH. Beshtokov, M. Z. Khudalov, “Difference methods of the solution of local and non-local boundary value problems for loaded equation of thermal conductivity of fractional order”, Stability, Control and Differential Games, Springer Nature, 2020
[23] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983
[24] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka, M., 1973