On the distribution of integral points on the three-dimensional sphere
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 224-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

The result of V.A. Bykovsky and M.D. Monina on the distribution of integer points on the three-dimensional sphere $ a_1^2 + a_2^2 + a_3^2 + a_4^2 = d $ with odd $d$ is extended to the case of even $d.$
@article{DVMG_2020_20_2_a9,
     author = {M. D. Monina},
     title = {On the distribution of integral points on the three-dimensional sphere},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {224--226},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a9/}
}
TY  - JOUR
AU  - M. D. Monina
TI  - On the distribution of integral points on the three-dimensional sphere
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 224
EP  - 226
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a9/
LA  - ru
ID  - DVMG_2020_20_2_a9
ER  - 
%0 Journal Article
%A M. D. Monina
%T On the distribution of integral points on the three-dimensional sphere
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 224-226
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a9/
%G ru
%F DVMG_2020_20_2_a9
M. D. Monina. On the distribution of integral points on the three-dimensional sphere. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 224-226. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a9/

[1] V. A. Bykovskii, M. D. Monina, “Trace Formula for Integral Points on the Three-Dimensional Sphere”, Doklady Mathematics, 101 (2020), 9–11 | DOI | MR

[2] V. A. Bykovsky, “Hecke series values of holomorphic cusp forms in the center of the critical strip”, Number Theory in Progress, v. 2, Elementary and Analytic Number Theory, eds. Ed. by K. Gyory, H. Iwaniec, and J. Urbanowicz, Walter de Gruyter, Berlin, 1999, 675–690 | MR

[3] Kh. Ivanets, E. Kovalskii, Analiticheskaya teoriya chisel, MTsNMO, M., 2014, 712 pp.