On estimates for the norms of the Hardy operator acting in the Lorenz spaces
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 191-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper conditions are found under which the compact operator $Tf(x)=\varphi(x)\int_0^xf(\tau)v(\tau)\,d\tau,$ $x>0,$ acting in weighted Lorentz spaces $T:L^{r,s}_{v}(\mathbb{R^+})\to L^{p,q}_{\omega}(\mathbb{R^+})$ in the domain $1\max (r,s)\le \min(p,q)\infty,$ belongs to operator ideals $\mathfrak{S}^{(a)}_\alpha$ and $\mathfrak{E}_\alpha$, $0\alpha\infty$. And estimates are also obtained for the quasinorms of operator ideals in terms of integral expressions which depend on operator weight functions.
@article{DVMG_2020_20_2_a6,
     author = {E. N. Lomakina},
     title = {On estimates for the norms of the {Hardy} operator acting in the {Lorenz} spaces},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {191--211},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a6/}
}
TY  - JOUR
AU  - E. N. Lomakina
TI  - On estimates for the norms of the Hardy operator acting in the Lorenz spaces
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 191
EP  - 211
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a6/
LA  - ru
ID  - DVMG_2020_20_2_a6
ER  - 
%0 Journal Article
%A E. N. Lomakina
%T On estimates for the norms of the Hardy operator acting in the Lorenz spaces
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 191-211
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a6/
%G ru
%F DVMG_2020_20_2_a6
E. N. Lomakina. On estimates for the norms of the Hardy operator acting in the Lorenz spaces. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 191-211. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a6/

[1] A. Pich, Operatornye idealy, Mir, M., 1982 | MR

[2] H. König, Eigenvalue distribution of compact operators, Birkhäuser, Boston, 1986 | DOI | MR

[3] C. Bennett, R. Sharpley, Interpolation of Operators, v. 129, Pure. Appl. Math., 1988 | MR | Zbl

[4] S. Barza, V. Kolyada V., J. Soria, “Sharp constants related to the triangle inequality in Lorentz spaces”, Trans. Amer. Math. Soc., 361:10 (2009), 5555–5574 | DOI | MR | Zbl

[5] D. E. Edmunds, W. D. Evans, D. J. Harris, “Two-sided estimates of the approximation numbers of certain Volterra integral operators”, Studia Math, 24:1 (1997), 59–80 | MR

[6] E. Lomakina, V. Stepanov, “On asymptotic behaviour of the approximation numbers and estimates of Schatten – von Neumann norms of the Hardy-type integral operators”, Function spaces and application, Narosa Publishing Hause, New Delhi, 2000 | MR | Zbl

[7] V. D. Stepanov, “On the singular numbers of certain Volterra integral operators”, J. London Math. Soc., 61:2 (2000), 905–922 | DOI | MR | Zbl

[8] E. P. Ushakova, “Otsenki singulyarnykh chisel preobrazovanii tipa Stiltesa”, Sib. matem. zhurn., 52:1 (2011), 201–209 | MR | Zbl

[9] E. Lomakina, V. Stepanov, “On the compactness and approximation numbers of Hardy type integral operators in Lorentz spases”, J. London Math. Soc., 53:2 (1996), 369–382 | DOI | MR | Zbl

[10] H. M. Chung, R. A. Hunt, D. S. Kurtz, “The Hardy-Littlewood maximal function on $L(p,q)$ spaces with weights”, Indiana Univ. Math. J., 31 (1982), 109–120 | DOI | MR | Zbl

[11] D. E. Edmunds, P. Gurka, L. Pick, “Compactness of Hardy-type integral operators in weighted Banach function spaces”, Studia Math., 109 (1994), 73–90 | MR | Zbl

[12] E. T. Sawyer, “Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator”, Trans. Amer. Math. Soc., 281 (1984), 329–337 | DOI | MR | Zbl

[13] L. Grafakos, Classical fourier analysis, Springer-Verlag, New York, 2008 | MR | Zbl

[14] D. E. Edmunds, V. D. Stepanov, “On the singular numbers of certain Volterra integral operators”, J. Funct. Anal., 134:1 (1995), 222–246 | DOI | MR | Zbl