On estimates for the norms of the Hardy operator acting in the Lorenz spaces
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 191-211

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper conditions are found under which the compact operator $Tf(x)=\varphi(x)\int_0^xf(\tau)v(\tau)\,d\tau,$ $x>0,$ acting in weighted Lorentz spaces $T:L^{r,s}_{v}(\mathbb{R^+})\to L^{p,q}_{\omega}(\mathbb{R^+})$ in the domain $1\max (r,s)\le \min(p,q)\infty,$ belongs to operator ideals $\mathfrak{S}^{(a)}_\alpha$ and $\mathfrak{E}_\alpha$, $0\alpha\infty$. And estimates are also obtained for the quasinorms of operator ideals in terms of integral expressions which depend on operator weight functions.
@article{DVMG_2020_20_2_a6,
     author = {E. N. Lomakina},
     title = {On estimates for the norms of the {Hardy} operator acting in the {Lorenz} spaces},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {191--211},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a6/}
}
TY  - JOUR
AU  - E. N. Lomakina
TI  - On estimates for the norms of the Hardy operator acting in the Lorenz spaces
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 191
EP  - 211
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a6/
LA  - ru
ID  - DVMG_2020_20_2_a6
ER  - 
%0 Journal Article
%A E. N. Lomakina
%T On estimates for the norms of the Hardy operator acting in the Lorenz spaces
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 191-211
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a6/
%G ru
%F DVMG_2020_20_2_a6
E. N. Lomakina. On estimates for the norms of the Hardy operator acting in the Lorenz spaces. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 191-211. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a6/