A strengthening the one of a theorem of Bourgain -- Kontorovich
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 164-190
Voir la notice de l'article provenant de la source Math-Net.Ru
The following result is proved in this work. Consider a set of $\mathfrak D_N $ not surpassing the $N$ of the denominators of those ultimate chain fractions, all incomplete private which belong to the alphabet $1,2,3,5$. Then inequality is fulfilled $|\mathfrak{D}_N|\gg N^{0.99}$. The calculation, made on a similar Burgeyin theorem – Of Kontorovich 2011, gives the answer $\mathfrak D_N \gg N^{0.80}$.
@article{DVMG_2020_20_2_a5,
author = {I. D. Kan},
title = {A strengthening the one of a theorem of {Bourgain} -- {Kontorovich}},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {164--190},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a5/}
}
I. D. Kan. A strengthening the one of a theorem of Bourgain -- Kontorovich. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 164-190. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a5/