A strengthening the one of a theorem of Bourgain -- Kontorovich
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 164-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following result is proved in this work. Consider a set of $\mathfrak D_N $ not surpassing the $N$ of the denominators of those ultimate chain fractions, all incomplete private which belong to the alphabet $1,2,3,5$. Then inequality is fulfilled $|\mathfrak{D}_N|\gg N^{0.99}$. The calculation, made on a similar Burgeyin theorem – Of Kontorovich 2011, gives the answer $\mathfrak D_N \gg N^{0.80}$.
@article{DVMG_2020_20_2_a5,
     author = {I. D. Kan},
     title = {A strengthening the one of a theorem of {Bourgain} -- {Kontorovich}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {164--190},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a5/}
}
TY  - JOUR
AU  - I. D. Kan
TI  - A strengthening the one of a theorem of Bourgain -- Kontorovich
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 164
EP  - 190
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a5/
LA  - ru
ID  - DVMG_2020_20_2_a5
ER  - 
%0 Journal Article
%A I. D. Kan
%T A strengthening the one of a theorem of Bourgain -- Kontorovich
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 164-190
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a5/
%G ru
%F DVMG_2020_20_2_a5
I. D. Kan. A strengthening the one of a theorem of Bourgain -- Kontorovich. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 164-190. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a5/

[1] S. K. Zaremba, “La méthode des "bons treillis" pour le calcul des intégerales multiples”, Applications of number theory to numerical analysis (Montreal, Canada, 1971), Academic Press, New York, 1972, 39–119 | DOI | MR

[2] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963

[3] H. Niederreiter, “Dyadic fractions with small partial quotients”, Monatsh. Math., 101:4 (1986), 309–315 | DOI | MR | Zbl

[4] D. Hensley, “A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets”, J. Number Theory, 58:1 (1996), 9–45 | DOI | MR | Zbl

[5] J. Bourgain, A. Kontorovich, “On Zaremba's conjecture”, Annals of Math., 180 (2014), 137–196 | DOI | MR | Zbl

[6] N. G. Moshchevitin, On some open problems in diophantine approximation, arXiv: 1202.4539

[7] D. Hensley, “The Hausdorff dimensions of some continued fraction cantor sets”, J. Number Theory, 33:2 (1989), 182–198 | DOI | MR | Zbl

[8] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain – Kontorovich's theorem by elementary methods, arXiv: 1207.4546 | MR

[9] D. A. Frolenkov, I. D. Kan, A reinforsment of the Bourgain – Kontorovich's theorem, arXiv: 1207.5168 | MR

[10] I. D. Kan, D. A. Frolenkov, “Usilenie teoremy Burgeina – Kontorovicha”, Izvestiya RAN. Seriya matematicheskaya, 78:2 (2014), 87–144 | MR

[11] D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain – Kontorovich - II”, Moskow Journal of Combinatorics and Number Theory, 4:1 (2014), 78–117 | MR | Zbl

[12] I. D. Kan, “Usilenie teoremy Burgeina – Kontorovicha - III”, Izvestiya RAN. Seriya matematicheskaya, 79:2 (2015), 77–100 | MR | Zbl

[13] I. D. Kan, “Usilenie teoremy Burgeina – Kontorovicha - IV”, Izvestiya RAN. Seriya matematicheskaya, 80:6 (2016), 103–126 | MR | Zbl

[14] I. D. Kan, “Usilenie teoremy Burgeina – Kontorovicha - V”, Sbornik trudov MIAN im. V. A. Steklova, 296 (2017), 133–139 | Zbl

[15] I. D. Kan, “Verna li gipoteza Zaremby?”, Matematicheskii sbornik, 210:3 (2019), 75–130 | MR | Zbl

[16] I. D. Shkredov, Growth in Chevalley groups relatively to parabolic subgroups and some applications, arXiv: 2003.12785

[17] Nikolay Moshchevitin, Brendan Murphy, Ilya Shkredov, “Popular products and continued fractions”, Israel J. Math., 2020, 1-–29 | MR

[18] Nikolay Moshchevitin, Ilya Shkredov, On a modular form of Zaremba’s conjecture, arXiv: 1911.07487

[19] O. Jenkinson, “On the density of Hausdorff dimensions of bounded type continued fraction sets: the Texan conjecture”, Stochastics and Dynamics, 4 (2004), 63–76 | DOI | MR | Zbl

[20] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley Reading, MA, 1994 | MR | Zbl

[21] R. Von, Metod Khardi – Littlvuda, Mir, M., 1985, 184 pp. | MR

[22] I. D. Kan, “Obraschenie neravenstva Koshi – Bunyakovskogo – Shvartsa”, Matematicheskie zametki, 99:3 (mart 2016), 350–354 | MR

[23] S. V. Konyagin, “Otsenki trigonometricheskikh summ po podgruppam i summ Gaussa”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”, posvyaschennaya 180-letiyu P. L. Chebysheva i 110-letiyu I. M. Vinogradova: Aktualnye problemy, ch. III (Tula, 2001), MGU, mekhmat, M., 2002, 86–114

[24] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Gl. red. fiz.-mat. lit., 1989, 240 pp. | MR