Rank analysis of computer programs
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 155-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes the application of the rank analysis method for formal languages on the example of the source codes of programs in the Java language. When describing the technology for compiling frequency dictionaries, attention is focused on how the presence of anaphoric content in computer programs is taken into consideration. When discussing the results, it was noted that the structural components of programs for various purposes correspond to certain areas of the graph of the dependence of rank on the frequency of occurrence of a lexeme.
@article{DVMG_2020_20_2_a4,
     author = {M. A. Guzev and M. A. Knyazeva and I. I. Moskalev and E. Y. Nikitina},
     title = {Rank analysis of computer programs},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {155--163},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a4/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - M. A. Knyazeva
AU  - I. I. Moskalev
AU  - E. Y. Nikitina
TI  - Rank analysis of computer programs
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 155
EP  - 163
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a4/
LA  - ru
ID  - DVMG_2020_20_2_a4
ER  - 
%0 Journal Article
%A M. A. Guzev
%A M. A. Knyazeva
%A I. I. Moskalev
%A E. Y. Nikitina
%T Rank analysis of computer programs
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 155-163
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a4/
%G ru
%F DVMG_2020_20_2_a4
M. A. Guzev; M. A. Knyazeva; I. I. Moskalev; E. Y. Nikitina. Rank analysis of computer programs. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 155-163. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a4/

[1] M. V. Arapov, E. H. Efimova, Yu. A. Shreider, “O smysle rangovykh raspredelenii”, Nauchno-tekhnicheskaya informatsiya, 2:1 (1975) | Zbl

[2] M. A. Guzev, E. Yu. Nikitina, “Rangovyi analiz Ugolovnogo Kodeksa RF (na primere ekonomicheskikh prestuplenii)”, Dalnevost. matem. zhurn., 10:2 (2010) | MR

[3] M. A. Guzev, N. N. Kradin, E. Yu. Nikitina, “Rangovyi analiz zhiznennogo tsikla politii”, Dalnevost. matem. zhurn., 17:2 (2017) | MR

[4] V. A. Stolbov, M. D. Sharygin, Vvedenie v ekonomicheskuyu i sotsialnuyu geografiyu. Uchebnoe posobie dlya vuzov, Drofa, M., 2007

[5] Richard Koch, The 80/20 Principle, Nicholas Brealey Publishing, London, 1997

[6] H. H. Chursin, Populyarnaya informatika, Tekhnika, K., 1982

[7] V. V. Mandelbrot, The Fractal Geometry of Nature, Freeman, New York, 1977 | MR

[8] V. I. Gnatyuk, “Zakon optimalnogo postroeniya tekhnotsenozov”, Tsenologicheskie issledovaniya, 29 (2005)

[9] V. P. Maslov, “Quantum Linguistic Statistics”, Russian Journal of Mathematical Physics, 13:3 (2006) | DOI | MR

[10] V. P. Maslov, T. V. Maslova, “O zakone Tsipfa i rangovykh raspredeleniyakh v lingvistike i semiotike”, Mat. Zametki, 80:5 (2006) | MR

[11] V. P. Maslov, “Zakon «otsutstviya predpochteniya» i sootvetstvuyuschie raspredeleniya v chastotnoi teorii veroyatnostei”, Mat. Zametki, 80:2 (2006)

[12] V. P. Maslov, “Fazovye perekhody nulevogo roda i kvantovanie zakona Tsipfa”, Teoreticheskaya i matematicheskaya fizika, 150:1 (2007)

[13] V. P. Maslov, Kvantovaya ekonomika, Nauka, M., 2006

[14] M. A. Guzev, N .N. Kradin, E. Y. Nikitina, “The Imperial Curve of Large Polities”, Social Evolution History, 16:2 (2017)

[15] Mozilla Foundation, MDN web docs. Rhino, 2020 http://www.mozilla.org/rhino/