Calculation of random pairs of primes whose product lies in a given short interval
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 150-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes heuristic algorithms for constructing pairs of random primes, the product of which lies in a given interval $ \left (\Delta, \, \Delta + \delta \right). $ One algorithm refers to the case $ \delta = \sqrt {\Delta }, $ and the second to $ \delta = 30 \Delta^{1/3}. $ They allow in the well-known RSA cryptosystem to choose shorter public keys (twice for the first algorithm and three times for the second).
@article{DVMG_2020_20_2_a3,
     author = {V. A. Bykovskii},
     title = {Calculation of random pairs of primes whose product lies in a given short interval},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {150--154},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a3/}
}
TY  - JOUR
AU  - V. A. Bykovskii
TI  - Calculation of random pairs of primes whose product lies in a given short interval
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 150
EP  - 154
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a3/
LA  - ru
ID  - DVMG_2020_20_2_a3
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%T Calculation of random pairs of primes whose product lies in a given short interval
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 150-154
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a3/
%G ru
%F DVMG_2020_20_2_a3
V. A. Bykovskii. Calculation of random pairs of primes whose product lies in a given short interval. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 150-154. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a3/

[1] Rivest R. L., Shamir A., Adleman L., “Method for Obtaining Digital Signatures and Public-Key Cryptosystems”, Commun. ACM, 21:2 (1978), 120–126 | DOI | MR | Zbl

[2] Hyxley M. N., “On the difference between consecutive primes”, Invent. math., 15 (1972), 164–170 | DOI | MR