Calculation of random pairs of primes whose product lies in a given short interval
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 150-154
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper proposes heuristic algorithms for constructing pairs of random primes, the product of which lies in a given interval $ \left (\Delta, \, \Delta + \delta \right). $ One algorithm refers to the case $ \delta = \sqrt {\Delta }, $ and the second to $ \delta = 30 \Delta^{1/3}. $ They allow in the well-known RSA cryptosystem to choose shorter public keys (twice for the first algorithm and three times for the second).
@article{DVMG_2020_20_2_a3,
author = {V. A. Bykovskii},
title = {Calculation of random pairs of primes whose product lies in a given short interval},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {150--154},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a3/}
}
TY - JOUR AU - V. A. Bykovskii TI - Calculation of random pairs of primes whose product lies in a given short interval JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 150 EP - 154 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a3/ LA - ru ID - DVMG_2020_20_2_a3 ER -
V. A. Bykovskii. Calculation of random pairs of primes whose product lies in a given short interval. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 150-154. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a3/