Jackson network in a random environment: strong approximation
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 144-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Jackson network with regenerative input flows in which every server is subject to a random environment influence generating breakdowns and repairs. They occur in accordance with two independent sequences of i.i.d. random variables. We establish a theorem on the strong approximation of the vector of queue lengths by a reflected Brownian motion in positive orthant.
@article{DVMG_2020_20_2_a2,
     author = {E. E. Bashtova and E. O. Lenena},
     title = {Jackson network in a random environment: strong approximation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {144--149},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/}
}
TY  - JOUR
AU  - E. E. Bashtova
AU  - E. O. Lenena
TI  - Jackson network in a random environment: strong approximation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 144
EP  - 149
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/
LA  - en
ID  - DVMG_2020_20_2_a2
ER  - 
%0 Journal Article
%A E. E. Bashtova
%A E. O. Lenena
%T Jackson network in a random environment: strong approximation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 144-149
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/
%G en
%F DVMG_2020_20_2_a2
E. E. Bashtova; E. O. Lenena. Jackson network in a random environment: strong approximation. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 144-149. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/

[1] J. M. Harrison, “The heavy traffic approximation for single server queues in series”, J. Appl. Probab., 10:3 (1973), 613–629 | DOI | MR | Zbl

[2] W. Whitt, “Heavy traffic limit theorems for queues: a survey”, In Mathematical Methods in Queueing Theory, 98 (1974), 307–350, Springer | DOI | MR

[3] A. J. Lemoine, “State of the art – networks of queues: a survey of weak convergence results”, Manag. Sci., 24:11 (1978), 1175–1193 | DOI | MR | Zbl

[4] M. I. Reiman, “Open queueing networks in heavy traffic”, Mathematics of Operations Research, 9:3 (1984), 441–458 | DOI | MR | Zbl

[5] H. Chen, D. D. Yao, Fundamentals of Queueing Networks, Springer, New York, 2001 | MR | Zbl

[6] N. V. Djellab, “On the $M|G|1$ retrial queue subjected to breakdowns”, RAIRO - Oper. Res., 36 (2002), 299–-310 | DOI | MR | Zbl

[7] D. P. Gaver, “A waiting line with interrupted service, including priorities”, J. R. Stat. Soc. (B), 24:1 (1962), 73–90 | MR | Zbl

[8] E. Kalimulina, Analysis of unreliable Jackson-type queueing networks with dynamic routing, SSRN Working Paper } {\tt https://ssrn.com/abstract=2881956

[9] N. Sherman, J. Kharoufen, M. Abramson, “An $M|G|1$ retrial queue with unreliable server for streaming multimedia applications”, Prob. Eng. Inf. Sci., 23 (2009), 281–304 | DOI | MR | Zbl

[10] L. G. Afanasyeva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Systems, 76 (2014), 125–147 | DOI | MR | Zbl

[11] J. M. Harrison, M. I. Reiman, “Reflected Brownian motion on an orthant”, Ann. Probab., 9:2 (1981), 302–308 | DOI | MR | Zbl

[12] W. L. Smith, “Regenerative stochastic processes”, Proc. Royal Soc. London Ser. A, 232:1188 (1955), 6–31 | MR | Zbl

[13] E. Bashtova, A. Shashkin, “Strong Gaussian approximation for cumulative processes with heavy tails”, arXiv: 2007.15481

[14] M. Csörgő, L. Horváth, J. Steinebach, “Invariance principles for renewal processes”, Ann. Probab., 15:4 (1987), 1441–1460 | DOI | MR | Zbl