Jackson network in a random environment: strong approximation
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 144-149

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a Jackson network with regenerative input flows in which every server is subject to a random environment influence generating breakdowns and repairs. They occur in accordance with two independent sequences of i.i.d. random variables. We establish a theorem on the strong approximation of the vector of queue lengths by a reflected Brownian motion in positive orthant.
@article{DVMG_2020_20_2_a2,
     author = {E. E. Bashtova and E. O. Lenena},
     title = {Jackson network in a random environment: strong approximation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {144--149},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/}
}
TY  - JOUR
AU  - E. E. Bashtova
AU  - E. O. Lenena
TI  - Jackson network in a random environment: strong approximation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2020
SP  - 144
EP  - 149
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/
LA  - en
ID  - DVMG_2020_20_2_a2
ER  - 
%0 Journal Article
%A E. E. Bashtova
%A E. O. Lenena
%T Jackson network in a random environment: strong approximation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2020
%P 144-149
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/
%G en
%F DVMG_2020_20_2_a2
E. E. Bashtova; E. O. Lenena. Jackson network in a random environment: strong approximation. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 144-149. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/