Jackson network in a random environment: strong approximation
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 144-149
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a Jackson network with regenerative input flows in which every server is subject to a random environment influence generating breakdowns and repairs. They occur in accordance with two independent sequences of i.i.d. random variables. We establish a theorem on the strong approximation of the vector of queue lengths by a reflected Brownian motion in positive orthant.
@article{DVMG_2020_20_2_a2,
author = {E. E. Bashtova and E. O. Lenena},
title = {Jackson network in a random environment: strong approximation},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {144--149},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/}
}
TY - JOUR AU - E. E. Bashtova AU - E. O. Lenena TI - Jackson network in a random environment: strong approximation JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 144 EP - 149 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/ LA - en ID - DVMG_2020_20_2_a2 ER -
E. E. Bashtova; E. O. Lenena. Jackson network in a random environment: strong approximation. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 144-149. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/