Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2020_20_2_a2, author = {E. E. Bashtova and E. O. Lenena}, title = {Jackson network in a random environment: strong approximation}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {144--149}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/} }
TY - JOUR AU - E. E. Bashtova AU - E. O. Lenena TI - Jackson network in a random environment: strong approximation JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 144 EP - 149 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/ LA - en ID - DVMG_2020_20_2_a2 ER -
E. E. Bashtova; E. O. Lenena. Jackson network in a random environment: strong approximation. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 144-149. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a2/
[1] J. M. Harrison, “The heavy traffic approximation for single server queues in series”, J. Appl. Probab., 10:3 (1973), 613–629 | DOI | MR | Zbl
[2] W. Whitt, “Heavy traffic limit theorems for queues: a survey”, In Mathematical Methods in Queueing Theory, 98 (1974), 307–350, Springer | DOI | MR
[3] A. J. Lemoine, “State of the art – networks of queues: a survey of weak convergence results”, Manag. Sci., 24:11 (1978), 1175–1193 | DOI | MR | Zbl
[4] M. I. Reiman, “Open queueing networks in heavy traffic”, Mathematics of Operations Research, 9:3 (1984), 441–458 | DOI | MR | Zbl
[5] H. Chen, D. D. Yao, Fundamentals of Queueing Networks, Springer, New York, 2001 | MR | Zbl
[6] N. V. Djellab, “On the $M|G|1$ retrial queue subjected to breakdowns”, RAIRO - Oper. Res., 36 (2002), 299–-310 | DOI | MR | Zbl
[7] D. P. Gaver, “A waiting line with interrupted service, including priorities”, J. R. Stat. Soc. (B), 24:1 (1962), 73–90 | MR | Zbl
[8] E. Kalimulina, Analysis of unreliable Jackson-type queueing networks with dynamic routing, SSRN Working Paper } {\tt https://ssrn.com/abstract=2881956
[9] N. Sherman, J. Kharoufen, M. Abramson, “An $M|G|1$ retrial queue with unreliable server for streaming multimedia applications”, Prob. Eng. Inf. Sci., 23 (2009), 281–304 | DOI | MR | Zbl
[10] L. G. Afanasyeva, E. E. Bashtova, “Coupling method for asymptotic analysis of queues with regenerative input and unreliable server”, Queueing Systems, 76 (2014), 125–147 | DOI | MR | Zbl
[11] J. M. Harrison, M. I. Reiman, “Reflected Brownian motion on an orthant”, Ann. Probab., 9:2 (1981), 302–308 | DOI | MR | Zbl
[12] W. L. Smith, “Regenerative stochastic processes”, Proc. Royal Soc. London Ser. A, 232:1188 (1955), 6–31 | MR | Zbl
[13] E. Bashtova, A. Shashkin, “Strong Gaussian approximation for cumulative processes with heavy tails”, arXiv: 2007.15481
[14] M. Csörgő, L. Horváth, J. Steinebach, “Invariance principles for renewal processes”, Ann. Probab., 15:4 (1987), 1441–1460 | DOI | MR | Zbl