Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2020_20_2_a14, author = {G. Sh. Tsitsiashvili}, title = {The computational complexity of optimal blocking of vertices in the digraph}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {267--270}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a14/} }
TY - JOUR AU - G. Sh. Tsitsiashvili TI - The computational complexity of optimal blocking of vertices in the digraph JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 267 EP - 270 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a14/ LA - ru ID - DVMG_2020_20_2_a14 ER -
G. Sh. Tsitsiashvili. The computational complexity of optimal blocking of vertices in the digraph. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 267-270. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a14/
[1] L. R. Ford, D. R. Fulkerson, “Maximal Flow Through a Network”, Canadian Journal of Mathematics, 8 (1956), 399–404 | DOI | MR | Zbl
[2] L. R. Ford, D. R. Fulkerson, “Algorithm for Finding Maximal Network Flows and an Application to the Hitchcock Problem”, Canadian Journal of Mathematics, 9 (1957), 210–-218 | DOI | MR | Zbl
[3] G. Sh. Tsitsiashvili, “Optimal blocking of undesired nodes in digraph”, Annals of Biostatistics and Biometric Applications, 4:1 (2020)
[4] J. Edmonds and R. M. Karp, “Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems”, Journal of the ACM, 19:2 (1972), 248–-264 | DOI | MR | Zbl
[5] E. A. Dinits, “Algorithm for solving the problem of maximum flow in the network with power estimation”, Reports of the USSR Academy of Sciences (In Russian), 194:4 (1970), 754–-757 | MR | Zbl
[6] G. Sh. Tsitsiashvili, “Sequential algorithms of graph nodes factorization”, Reliability: Theory and Applications, 8:4 (2013), 30–33