The computational complexity of optimal blocking of vertices in the digraph
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 267-270
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we solve the problem of determining the minimum set of edges, whose removal from the digraph breaks all paths, that pass through the selected set of vertices. This problem is reduced to the problem of the minimum section and maximum flow in a bipolar junction. Methods of digraph decomposition that reduce its computational complexity are proposed.
@article{DVMG_2020_20_2_a14,
author = {G. Sh. Tsitsiashvili},
title = {The computational complexity of optimal blocking of vertices in the digraph},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {267--270},
publisher = {mathdoc},
volume = {20},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a14/}
}
TY - JOUR AU - G. Sh. Tsitsiashvili TI - The computational complexity of optimal blocking of vertices in the digraph JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 267 EP - 270 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a14/ LA - ru ID - DVMG_2020_20_2_a14 ER -
G. Sh. Tsitsiashvili. The computational complexity of optimal blocking of vertices in the digraph. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 2, pp. 267-270. http://geodesic.mathdoc.fr/item/DVMG_2020_20_2_a14/