Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2020_20_1_a9, author = {D. B. Prokopieva and T. {\CYRA}. Zhuk and N. I. Golovko}, title = {Derivation of {Kolmogorov} -- {Chapman} type equations with {Fokker} -- {Planck} operator}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {90--107}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a9/} }
TY - JOUR AU - D. B. Prokopieva AU - T. А. Zhuk AU - N. I. Golovko TI - Derivation of Kolmogorov -- Chapman type equations with Fokker -- Planck operator JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 90 EP - 107 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a9/ LA - ru ID - DVMG_2020_20_1_a9 ER -
%0 Journal Article %A D. B. Prokopieva %A T. А. Zhuk %A N. I. Golovko %T Derivation of Kolmogorov -- Chapman type equations with Fokker -- Planck operator %J Dalʹnevostočnyj matematičeskij žurnal %D 2020 %P 90-107 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a9/ %G ru %F DVMG_2020_20_1_a9
D. B. Prokopieva; T. А. Zhuk; N. I. Golovko. Derivation of Kolmogorov -- Chapman type equations with Fokker -- Planck operator. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 90-107. http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a9/
[1] G. I. Ivchenko, V. A. Kashtanov, I. N. Kovalenko, Teoriya massovogo obsluzhivaniya, Vysshaya shkola, M., 1982
[2] N. Sh. Kremer, Issledovanie operatsii v ekonomike, YuRAIT, M., 2010
[3] B. V. Gnedenko, I.N. Kovalenko, Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, M., 1987 | MR
[4] D. Kouzi, Kompyuternye seti. Kniga 2: Networking Essentials, Diasoft, Kiev, 1999
[5] M. Levin, Kompyuternye seti. Ustroistvo, podklyuchenie i ispolzovanie., Overlei, M., 2000
[6] N. I. Golovko, V. O. Karetnik, V. E. Tanin, I. I. Safonyuk, “Issledovanie modelei sistem massovogo obsluzhivaniya v informatsionnykh setyakh”, Sibirskii zhurnal industrialnoi matematiki, 2(34) (2008), 50–64 | Zbl
[7] A. D. Crescenzo, “Diffusion approximation to a queueing system with time-dependent arrival and service rates”, Queueing Systems, 14(19) (1995), 41–62 | DOI | MR
[8] R. Atar, “A diffusion model of scheduling control in queueing systems with many servers”, Ann. Appl. Probab, 15(1B) (2005), 820–852 | DOI | MR | Zbl
[9] M. Miyazawa, “Diffusion approximation for stationary analysis of queues and their networks: a review”, Journal of the Operations Research Society of Japan, 58(1) (2015), 104–148 | DOI | MR | Zbl
[10] D. B. Prokopeva, T. A. Zhuk, N. I. Golovko, “Vyvod uravnenii dlya sistem massovogo obsluzhivaniya s diffuzionnoi intensivnostyu vkhodnogo potoka i nulevym koeffitsientom snosa”, Izvestiya KGTU, 46 (2017), 184–193
[11] L. Kleinrok, Teoriya massovogo obsluzhivaniya, Mashinostroenie, M., 1979
[12] A. T. Barucha-Rid, Elementy teorii markovskikh protsessov i ikh prilozheniya, Nauka, M., 1969
[13] B. V. Gnedenko, Kurs teorii veroyatnostei, Nauka, M., 1988 | MR
[14] I. N. Bekman, Matematika diffuzii, uchebnoe posobie, OntoPrint, M., 2016