Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2020_20_1_a6, author = {V. Yu. Kapitan and E. V. Vasil'ev and Yu. A. Shevchenko and A. V. Perzhu and D. Yu. Kapitan and A. E. Rybin and K. S. Soldatov and A. G. Makarov and R. A. Volotovskii and K. V. Nefedev}, title = {Thermodynamic properties of {Heisenberg} spin systems on a square lattice with the {Dzyaloshinskii--Moriya} interaction}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {63--73}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a6/} }
TY - JOUR AU - V. Yu. Kapitan AU - E. V. Vasil'ev AU - Yu. A. Shevchenko AU - A. V. Perzhu AU - D. Yu. Kapitan AU - A. E. Rybin AU - K. S. Soldatov AU - A. G. Makarov AU - R. A. Volotovskii AU - K. V. Nefedev TI - Thermodynamic properties of Heisenberg spin systems on a square lattice with the Dzyaloshinskii--Moriya interaction JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 63 EP - 73 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a6/ LA - ru ID - DVMG_2020_20_1_a6 ER -
%0 Journal Article %A V. Yu. Kapitan %A E. V. Vasil'ev %A Yu. A. Shevchenko %A A. V. Perzhu %A D. Yu. Kapitan %A A. E. Rybin %A K. S. Soldatov %A A. G. Makarov %A R. A. Volotovskii %A K. V. Nefedev %T Thermodynamic properties of Heisenberg spin systems on a square lattice with the Dzyaloshinskii--Moriya interaction %J Dalʹnevostočnyj matematičeskij žurnal %D 2020 %P 63-73 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a6/ %G ru %F DVMG_2020_20_1_a6
V. Yu. Kapitan; E. V. Vasil'ev; Yu. A. Shevchenko; A. V. Perzhu; D. Yu. Kapitan; A. E. Rybin; K. S. Soldatov; A. G. Makarov; R. A. Volotovskii; K. V. Nefedev. Thermodynamic properties of Heisenberg spin systems on a square lattice with the Dzyaloshinskii--Moriya interaction. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 63-73. http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a6/
[1] B. Heinrich, J. A. C. Bland, “Ultrathin magnetic structures”, Measurement techniques and novel magnetic properties, v. 2, Springer Science Business Media, 2006
[2] V. Belokon, V. Kapitan, O. Dyachenko, “The combination of the random interaction fields’ method and the Bethe–Peierls method for studying two-sublattice magnets”, Journal of Magnetism and Magnetic Materials, 401 (2016), 651–655 | DOI
[3] V. V. Prudnikov, P. V. Prudnikov, D. E. Romanovskii, “Monte Carlo simulation of multilayer magnetic structures and calculation of the magnetoresistance coefficient”, JETP letters, 102:10 (2015), 668–673 | DOI
[4] Pavel V. Prudnikov, Vladimir V. Prudnikov, Maria A. Menshikova, Natalia I. Piskunova, “Dimensionality crossover in critical behaviour of ultrathin ferromagnetic films”, Journal of Magnetism and Magnetic Materials, 387 (2015), 77–82 | DOI
[5] Koh Yang Wei, Lee Hwee Kuan, Okabe Yutaka, “Dynamically optimized Wang-Landau sampling with adaptive trial moves and modification factors”, Physical Review E, 88:5 (2013), 053302 | DOI
[6] Belokon V. I., Kapitan V. Yu., Dyachenko O. I., “Concentration of magnetic transitions in dilute magnetic materials”, Journal of Physics: Conference Series, 490:1 (2014), 012165 | DOI
[7] Landau David P., Binder Kurt, A guide to Monte Carlo simulations in statistical physics, Cambridge university press, 2014 | MR
[8] V. Yu. Kapitan, A. V. Perzhu, and K. V. Nefedev, “High-performance Monte Carlo Simulation of Multilayer Magnetic Films”, Journal of Nano– Electronic Physics, 9:5 (2017), 05015, 4 pp.
[9] V. Yu. Kapitan, K. V. Nefedev, “Labyrinth Domain Structure in the Models with Long-range Interaction”, Journal of nano– and electronic physics, 6:3 (2014), 03005, 4 pp.
[10] S. Do Yi, S. Onoda, N. Nagaosa, J. H. Han, “Skyrmions and anomalous hall effect in a Dzyaloshinskii-Moriya spiral magnet”, Physical Review B, 80:5 (2009), 054416 | DOI
[11] A. Belemuk, S. Stishov, “Phase transitions in chiral magnets from Monte Carlo simulations”, Physical Review B, 95:22 (2017), 224433 | DOI
[12] V. Yu. Kapitan, Y. A. Shevchenko, A. V. Perzhu, E. V. Vasiliev, “Thermodynamic Properties of Heisenberg Spin Systems”, Key Engineering Materials, 806:4 (2019), 142–154 | DOI
[13] I. Dzyaloshinsky, “A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics”, Journal of Physics and Chemistry of Solids, 4:4 (1958), 241–255 | DOI
[14] T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism”, Physical Review, 120:1 (1960), 91 | DOI
[15] Rakić Predrag S., Radošević Slobodan M., Mali Petar M. Stričević Lazar M,Petrić Tara D, “Multipath Metropolis simulation: An application to the classical Heisenberg model”, Physica A: Statistical Mechanics and its Applications, 44 (2016), 69–80 | DOI | MR
[16] F. Wang, D. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states”, Physical review letters, 88:10 (2001), 2050 | DOI
[17] M. Deserno, “How to generate equidistributed points on the surface of a sphere”, If Polymerforshung (Ed.), 2004, 99
[18] G. Brown, T. C. Schulthess, “Wang–Landau estimation of magnetic properties for the Heisenberg model”, Journal of applied physics, 97:10 (2005), 477 | DOI
[19] James Ahrens, Berk Geveci, Charles Law, “Paraview: An end-user tool for large data visualization”, The visualization handbook, 77 (2005)
[20] A. A. Sorokin, S. V. Makogonov, S. P. Korolev, “The information infrastructure for collective scientific work in the Far East of Russia”, Scientific and Technical Information Processing, 44:4 (2017), 302–304 | DOI