Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2020_20_1_a3, author = {A. I. Gudimenko}, title = {Heat flow in a one-dimensional semi-infinite harmonic lattice with an absorbing boundary}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {38--51}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a3/} }
TY - JOUR AU - A. I. Gudimenko TI - Heat flow in a one-dimensional semi-infinite harmonic lattice with an absorbing boundary JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 38 EP - 51 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a3/ LA - ru ID - DVMG_2020_20_1_a3 ER -
A. I. Gudimenko. Heat flow in a one-dimensional semi-infinite harmonic lattice with an absorbing boundary. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 38-51. http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a3/
[1] E. Teramoto, “Heat Flow in the Linear Chain of Harmonically Coupled Particles”, Prog. Theor. Phys., 28:6 (1962), 1059–1064 | DOI
[2] S. Kashiwamura, E. Teramoto, “Effect of an Isotopic Impurity on the Heat Flow in One-Dimensional Coupled Harmonic Oscillators”, Prog. Theor. Phys. Suppl., 1962, no. 23, 207–222 | DOI
[3] É. I. Takizawa, K. Kobayasi, “Heat Flow in a System of Coupled Harmonic Oscillators”, Chin J. Phys., 1:2 (1963), 59–73
[4] K. Kobayasi, É. I. Takizawa, “Effect of an Isotopic Impurity on the Energy Flow in a System of One-Dimensional Coupled Harmonic Oscillators”, Chin J. Phys., 2:1 (1964), 10–22
[5] K. Kobayasi, É. I. Takizawa, “Effect of a Light Isotopic Impurity on the Energy Flow in a System of One-Dimensional Coupled Harmonic Oscillators”, Chin J. Phys., 2:2 (1964), 68–79
[6] R. J. Rubin, “Momentum Autocorrelation Functions and Energy Transport in Harmonic Crystals Containing Isotopic Defects”, Phys, Rev., 131:3 (1963), 964–989 | DOI
[7] R. J. Rubin, W. L. Greer, “Abnormal Lattice Thermal Conductivity of a One-Dimensional, Harmonic, Isotopically Disordered Crystal”, J. Math. Phys., 12:8 (1971), 1686–1701 | DOI
[8] E. L. Lindman, “Free-space boundary conditions for the time dependent wave equation”, J. Comp. Phys., 18 (1975), 66–78 | DOI | Zbl
[9] B. Engquist, A .Majda, “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comp., 31:139 (1977), 629–651 | DOI | MR | Zbl
[10] B. Engquist, A .Majda, “Radiation boundary conditions for acoustic and elastic wave calculations”, Comm. Pure Appl. Math., 32 (1979), 313–357 | DOI | MR | Zbl
[11] L. Halpern, “Absorbing Boundary Conditions for the Discretization Schemes of the One-Dimensional Wave Equation”, Mathematics of Computation, 38:158 (1982), 415–429 | DOI | MR | Zbl
[12] A. Dhar, “Heat transport in low-dimensional systems”, Advances in Physics, 57:5 (2008), 457–537 | DOI
[13] Thermal Transport in Low Dimensions, Lecture Notes in Physics, 921, ed. S. Lepri, Springer International Publishing, 2016 | MR
[14] E. Schrödinger, “Zur Dynamik elastisch gekoppelter Punktsysteme”, Annalen der Physik, 44 (1914), 916–934 | DOI | Zbl
[15] J. W. Gibbs, Elementary principles in statistical mechanics, developed with especial reference to the rational foundation of thermodynamics, New York, 1902 | MR | Zbl
[16] V. I. Arnold, A. Avets, Ergodicheskie problemy klassicheskoi mekhaniki, Izhevskaya respublikanskaya tipografiya, Izhevsk, 1999
[17] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944 | MR | Zbl