Heat flow in a one-dimensional semi-infinite harmonic lattice with an absorbing boundary
Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 38-51
Voir la notice de l'article provenant de la source Math-Net.Ru
Traditionally, absorbing boundary conditions are used to limit the domains of numerical approximation of partial differential equations in infinite domains.
In the present paper, the simplest of these conditions is used to obtain an analytical approximation of the solution to the problem of heat propagation in a one-dimensional infinite harmonic lattice consisting of two semi-infinite homogeneous sublattices with different mechanical characteristics.
@article{DVMG_2020_20_1_a3,
author = {A. I. Gudimenko},
title = {Heat flow in a one-dimensional semi-infinite harmonic lattice with an absorbing boundary},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {38--51},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a3/}
}
TY - JOUR AU - A. I. Gudimenko TI - Heat flow in a one-dimensional semi-infinite harmonic lattice with an absorbing boundary JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2020 SP - 38 EP - 51 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a3/ LA - ru ID - DVMG_2020_20_1_a3 ER -
A. I. Gudimenko. Heat flow in a one-dimensional semi-infinite harmonic lattice with an absorbing boundary. Dalʹnevostočnyj matematičeskij žurnal, Tome 20 (2020) no. 1, pp. 38-51. http://geodesic.mathdoc.fr/item/DVMG_2020_20_1_a3/