Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 173-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of one-sided contact of two elastic bodies is considered. This is a static displacement problem. The bodies are influenced by bulk and surface forces, in the contact area there are friction forces. The substantiation of using the method of modified Lagrange functionals is given. The method of successive displacement is applied to the solution of a finite-dimensional analog of a task. To solve a finite-dimensional problem, the pointwise relaxation method is used. The results of numerical calculations are given.
@article{DVMG_2019_19_2_a2,
     author = {A. Zhiltsov and R. V. Namm},
     title = {Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {173--184},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a2/}
}
TY  - JOUR
AU  - A. Zhiltsov
AU  - R. V. Namm
TI  - Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 173
EP  - 184
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a2/
LA  - ru
ID  - DVMG_2019_19_2_a2
ER  - 
%0 Journal Article
%A A. Zhiltsov
%A R. V. Namm
%T Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 173-184
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a2/
%G ru
%F DVMG_2019_19_2_a2
A. Zhiltsov; R. V. Namm. Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 173-184. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a2/

[1] J. $Jaru\check{s}ek$, “Contact problems with bounded friction. Coercive case”, Czechoslovak Mathematical Journal., 33:2 (1983), 237–-261 | MR | Zbl

[2] J. $Jaru\check{s}ek$, “Contact problems with bounded friction. Semicoercive case”, Czechoslovak Mathematical Journal., 34:4 (1984), 619–-629 | MR | Zbl

[3] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[4] A. S. Kravchuk, Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, MGAPI, M., 1997

[5] N. Kikuchi, T. Oden, Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia., 1988 | MR

[6] R. V. Namm, G. I. Tsoi, “Metod posledovatelnykh priblizhenii dlya resheniya kvazivariatsionnogo neravenstva Sinorini”, Izv. vuzov. Matem., 2017, no. 7, 44–52 | Zbl

[7] E. M. Vikhtenko, G. S. Vu, R. V. Namm, “O skhodimosti metoda Udzavy s modifitsirovannym funktsionalom Lagranzha v variatsionnykh neravenstvakh mekhaniki”, Zh. vychisl. matem. i matem. fiz., 10:8 (2010), 1357–1366 | MR

[8] A. V. Zhiltsov, “Metod mnozhitelei Lagranzha dlya resheniya zadachi ob odnostoronnem kontakte uprugikh tel s ogranichennoi zonoi kontakta”, Matematicheskie zametki SVFU, 23:4 (2016), 99–113

[9] E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “Modifitsirovannye funktsionaly Lagranzha dlya resheniya variatsionnykh i kvazivariatsionnykh neravenstv mekhaniki”, Avtomat. i telemekh., 2012, no. 4, 3–17 | MR | Zbl

[10] E. M. Vikhtenko, R. V. Namm, “Iterativnaya proksimalnaya regulyarizatsiya modifitsirovannogo funktsionala Lagranzha dlya resheniya polukoertsitivnogo kvazivariatsionnogo neravenstva Sinorini”, Zhurn. vychisl. matem. i matem. fiz., 48:9 (2008), 1571–1579 | MR

[11] I. Konnov, J. Gwinner, “A strongly convergent combined relaxation method in Hilbert spaces”, Numerical Funct. Anal. Optim., 35:(7–9) (2014), 1066–-1077 | DOI | MR | Zbl

[12] R. Glovinski, Zh.-L. Gaslinger, R. Tremoler, Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979

[13] A. Ya. Zolotukhin, R. V. Namm, A. V. Pachina, “Priblizhennoe reshenie variatsionnoi zadachi Mosolova i Myasnikova s treniem na granitse po zakonu Kulona”, Sib. zhurn. vychisl. matem., 4:2 (2001), 163–177