Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2019_19_2_a2, author = {A. Zhiltsov and R. V. Namm}, title = {Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {173--184}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a2/} }
TY - JOUR AU - A. Zhiltsov AU - R. V. Namm TI - Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2019 SP - 173 EP - 184 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a2/ LA - ru ID - DVMG_2019_19_2_a2 ER -
%0 Journal Article %A A. Zhiltsov %A R. V. Namm %T Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary %J Dalʹnevostočnyj matematičeskij žurnal %D 2019 %P 173-184 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a2/ %G ru %F DVMG_2019_19_2_a2
A. Zhiltsov; R. V. Namm. Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 2, pp. 173-184. http://geodesic.mathdoc.fr/item/DVMG_2019_19_2_a2/
[1] J. $Jaru\check{s}ek$, “Contact problems with bounded friction. Coercive case”, Czechoslovak Mathematical Journal., 33:2 (1983), 237–-261 | MR | Zbl
[2] J. $Jaru\check{s}ek$, “Contact problems with bounded friction. Semicoercive case”, Czechoslovak Mathematical Journal., 34:4 (1984), 619–-629 | MR | Zbl
[3] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR
[4] A. S. Kravchuk, Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, MGAPI, M., 1997
[5] N. Kikuchi, T. Oden, Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia., 1988 | MR
[6] R. V. Namm, G. I. Tsoi, “Metod posledovatelnykh priblizhenii dlya resheniya kvazivariatsionnogo neravenstva Sinorini”, Izv. vuzov. Matem., 2017, no. 7, 44–52 | Zbl
[7] E. M. Vikhtenko, G. S. Vu, R. V. Namm, “O skhodimosti metoda Udzavy s modifitsirovannym funktsionalom Lagranzha v variatsionnykh neravenstvakh mekhaniki”, Zh. vychisl. matem. i matem. fiz., 10:8 (2010), 1357–1366 | MR
[8] A. V. Zhiltsov, “Metod mnozhitelei Lagranzha dlya resheniya zadachi ob odnostoronnem kontakte uprugikh tel s ogranichennoi zonoi kontakta”, Matematicheskie zametki SVFU, 23:4 (2016), 99–113
[9] E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “Modifitsirovannye funktsionaly Lagranzha dlya resheniya variatsionnykh i kvazivariatsionnykh neravenstv mekhaniki”, Avtomat. i telemekh., 2012, no. 4, 3–17 | MR | Zbl
[10] E. M. Vikhtenko, R. V. Namm, “Iterativnaya proksimalnaya regulyarizatsiya modifitsirovannogo funktsionala Lagranzha dlya resheniya polukoertsitivnogo kvazivariatsionnogo neravenstva Sinorini”, Zhurn. vychisl. matem. i matem. fiz., 48:9 (2008), 1571–1579 | MR
[11] I. Konnov, J. Gwinner, “A strongly convergent combined relaxation method in Hilbert spaces”, Numerical Funct. Anal. Optim., 35:(7–9) (2014), 1066–-1077 | DOI | MR | Zbl
[12] R. Glovinski, Zh.-L. Gaslinger, R. Tremoler, Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979
[13] A. Ya. Zolotukhin, R. V. Namm, A. V. Pachina, “Priblizhennoe reshenie variatsionnoi zadachi Mosolova i Myasnikova s treniem na granitse po zakonu Kulona”, Sib. zhurn. vychisl. matem., 4:2 (2001), 163–177