Problem of partial identification of unknown medium
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 43-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problem of partial identification of an unknown medium chemical composition by the method of repeated scanning of this medium by collimated x-ray flux. A mathematical model for the problem of identification is formulated and its comparison with the task of finding the chemical composition of the medium carried out. A method for solving the problem of identification is based on the construction of a special function, called the indicator of distinguishability of substances. By way of illustration, results of calculations performed for various specific groups of chemical elements are presented.
@article{DVMG_2019_19_1_a6,
     author = {V. G. Nazarov},
     title = {Problem of partial identification of unknown medium},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {43--62},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a6/}
}
TY  - JOUR
AU  - V. G. Nazarov
TI  - Problem of partial identification of unknown medium
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 43
EP  - 62
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a6/
LA  - ru
ID  - DVMG_2019_19_1_a6
ER  - 
%0 Journal Article
%A V. G. Nazarov
%T Problem of partial identification of unknown medium
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 43-62
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a6/
%G ru
%F DVMG_2019_19_1_a6
V. G. Nazarov. Problem of partial identification of unknown medium. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 43-62. http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a6/

[1] Sergei Osipov, Sergei Chakhlov, Andrey Batranin, Oleg Osipov, Van Bak Trinh, Juriy Kytmanov, “Theoretical study of a simplified implementation model of a dual-energy technique for computed tomography”, NDT and E International, 98 (2018), 63–69 | DOI

[2] S. P. Osipov, V. A. Udod, Yanzhao Wang, “Identification of Materials in X-Ray Inspections of Objects by the Dual-Energy Method”, Russian Journal of Nondestructive Testing, 53:8 (2017), 568–587 | DOI

[3] V. A. Klimenov, S. P. Osipov, A. K. Temnik, “Identifikatsiya veschestva ob'ekta kontrolya metodom dualnykh energii”, Defektoskopiya, 11 (2013), 40–50

[4] J. H. Hubbell, S. M. Seltzer, Tables of X – Ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients 1 Kev to 20 Mev for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, Preprint NISTIR-5632, Nat. Inst. of Standard and Technology, Gaithersburg, 1995

[5] M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, 2005 http://www.physics.nist.gov/xcom

[6] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[7] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Transport Equation and Tomography, VSP, Utrecht-Boston, 2002 | MR | Zbl

[8] V. G. Nazarov, “O povyshenii tochnosti vychislenii v zadache nakhozhdeniya khimicheskogo sostava sredy”, Dalnevostochnyi matematicheskii zhurnal, 18:2 (2018), 219–232 | MR | Zbl

[9] V. G. Nazarov, “Metod singulyarnogo razlozheniya matritsy v zadache nakhozhdeniya khimicheskogo sostava sredy”, Sibirskie elektronnye matematicheskie izvestiya, 14 (2017), 821–837 | MR | Zbl

[10] V. G. Nazarov, “Vybor optimalnykh znachenii energii izlucheniya v zadache nakhozhdeniya khimicheskogo sostava sredy”, Matematicheskoe modelirovanie, 30 (2018), 91–102 | Zbl

[11] S. K. Godunov, A. G. Antonov, O. P. Kirilyuk, V. I. Kostin, Garantirovannaya tochnost resheniya sistem lineinykh uravnenii v evklidovykh prostranstvakh, Nauka. Sib. otd-nie, Novosibirsk, 1988

[12] Dzh. Forsait, M. Malkolm, K. Mouler, Mashinnye metody matematicheskikh vychislenii, Mir, M., 1980

[13] D. S. Anikonov, “Integro-differential heterogeneity indicator in tomography problem”, J.Inv.Ill-Posed Problems, 7:1 (1999), 17–59 | DOI | MR | Zbl

[14] A. I. Volkov, I. V. Zharskii, Bolshoi khimicheskii spravochnik, Sovremennaya shkola, Minsk, 2005