Extremal cubature formulas for anisotropic classes
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 10-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E^{(\alpha; s)}$ be a class of periodical functions $$ f(x_1, \dots, x_s)=\sum_{(m_1, \dots, m_s)\in \mathbb{Z}^s} c(m_1, \dots, m_s)\exp\left(2\pi i(m_1 x_1+\dots+ m_s x_s)\right) $$ with $ \left|c(m_1, \dots, m_s)\right|\leq \prod_{j=1} \left(\text{max} (1, |m_j|)\right)^{-\alpha}, $ and $1 \alpha \infty$. In this work for all natural numbers $1 N \infty$ we prove best possible estimation $$ R_N\left(E^{(\alpha; s)}\right)\ll_{\alpha, s} \frac{\left(\log N\right)^{s-1}}{N^\alpha} $$ for the error of the best cubature formula on the class $E^{(\alpha; s)}$ with $N$ nodes and weights. Similar results are proved for other classes of functions.
@article{DVMG_2019_19_1_a2,
     author = {V. A. Bykovskii},
     title = {Extremal cubature formulas for  anisotropic classes},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {10--19},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a2/}
}
TY  - JOUR
AU  - V. A. Bykovskii
TI  - Extremal cubature formulas for  anisotropic classes
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 10
EP  - 19
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a2/
LA  - ru
ID  - DVMG_2019_19_1_a2
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%T Extremal cubature formulas for  anisotropic classes
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 10-19
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a2/
%G ru
%F DVMG_2019_19_1_a2
V. A. Bykovskii. Extremal cubature formulas for  anisotropic classes. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 10-19. http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a2/