Extremal cubature formulas for anisotropic classes
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 10-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E^{(\alpha; s)}$ be a class of periodical functions
$$
f(x_1, \dots, x_s)=\sum_{(m_1, \dots, m_s)\in \mathbb{Z}^s} c(m_1, \dots, m_s)\exp\left(2\pi i(m_1 x_1+\dots+ m_s x_s)\right)
$$
with
$
\left|c(m_1, \dots, m_s)\right|\leq \prod_{j=1} \left(\text{max} (1, |m_j|)\right)^{-\alpha},
$
and $1 \alpha \infty$. In this work for all natural numbers $1 N \infty$ we prove best possible estimation
$$
R_N\left(E^{(\alpha; s)}\right)\ll_{\alpha, s} \frac{\left(\log N\right)^{s-1}}{N^\alpha}
$$
for the error of the best cubature formula on the class
$E^{(\alpha; s)}$ with $N$ nodes and weights. Similar results are proved for other classes of functions.
@article{DVMG_2019_19_1_a2,
author = {V. A. Bykovskii},
title = {Extremal cubature formulas for anisotropic classes},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {10--19},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a2/}
}
V. A. Bykovskii. Extremal cubature formulas for anisotropic classes. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 10-19. http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a2/