Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2019_19_1_a14, author = {A. Yu. Chebotarev and A. G. Kolobov and T. V. Pak}, title = {The problem of radiative heat transfer without boundary conditions for the intensity of radiation}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {119--124}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a14/} }
TY - JOUR AU - A. Yu. Chebotarev AU - A. G. Kolobov AU - T. V. Pak TI - The problem of radiative heat transfer without boundary conditions for the intensity of radiation JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2019 SP - 119 EP - 124 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a14/ LA - ru ID - DVMG_2019_19_1_a14 ER -
%0 Journal Article %A A. Yu. Chebotarev %A A. G. Kolobov %A T. V. Pak %T The problem of radiative heat transfer without boundary conditions for the intensity of radiation %J Dalʹnevostočnyj matematičeskij žurnal %D 2019 %P 119-124 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a14/ %G ru %F DVMG_2019_19_1_a14
A. Yu. Chebotarev; A. G. Kolobov; T. V. Pak. The problem of radiative heat transfer without boundary conditions for the intensity of radiation. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 119-124. http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a14/
[1] M. F. Modest, Radiative Heat Transfer, Academic Press, 2003
[2] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model”, Communications in Nonlinear Science and Numerical Simulation, 20:2 (2015), 776–784 | DOI | MR | Zbl
[3] R. Pinnau, “Analysis of Optimal Boundary Control for Radiative Heat Transfer Modelled by the SP$_1$-System”, Comm. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl
[4] P.-E. Druet, “Existence of weak solutions to the time-dependent MHD-equations coupled to heat transfer with nonlocal radiation boundary conditions”, Nonlinear Anal. Real World Appl., 10:5 (2009), 2914–2936 | DOI | MR | Zbl
[5] O. Tse, R. Pinnau, N. Siedow, “Identification of temperature dependent parameters in laser–interstitial thermo therapy”, Math. Models Methods Appl. Sci., 22:9 (2012), 1–29 | DOI | MR
[6] A. E. Kovtanyuk, A. Yu. Chebotarev, “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219 (2013), 9356–9362 | MR | Zbl
[7] A. E. Kovtanyuk, A. Yu. Chebotarev, “Statsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:4 (2014), 191–199
[8] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Solvability of P1 approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252 | MR | Zbl
[9] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815 | DOI | MR | Zbl
[10] A. E. Kovtanyuk, A. Yu. Chebotarev, “Statsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Differentsialnye uravneniya, 50:12 (2014), 1590–1597 | DOI | Zbl
[11] G. V. Grenkin, A. Yu. Chebotarev, “Ustoichivost statsionarnykh reshenii diffuzionnoi modeli slozhnogo teploobmena”, Dalnevostochnyi matematicheskii zhurnal, 14:1 (2014), 18–32 | MR | Zbl
[12] G. V. Grenkin, A. Yu. Chebotarev, “Nestatsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:11 (2014), 1806–1816 | DOI | MR | Zbl
[13] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412 (2014), 520–528 | DOI | MR | Zbl
[14] G. V. Grenkin, “Optimalnoe upravlenie v nestatsionarnoi zadache slozhnogo teploobmena”, Dalnevostochnyi matematicheskii zhurnal, 14:2 (2014), 160–172 | MR | Zbl
[15] G. V. Grenkin, A. Yu. Chebotarev, “Neodnorodnaya nestatsionarnaya zadacha slozhnogo teploobmena”, Sibirskie elektronnye matematicheskie izvestiya, 12:11 (2015), 562–576 | MR | Zbl
[16] G. V. Grenkin, A. Yu. Chebotarev, “Nestatsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Zh. vychisl. matem. fiz., 56:2 (2016), 275–282 | DOI | MR | Zbl
[17] G. V. Grenkin, A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433 (2016), 1243–1260 | DOI | MR | Zbl
[18] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439 (2016), 678–689 | DOI | MR | Zbl
[19] A. Yu. Chebotarev, A. E. Kovtanyuk, G. V. Grenkin, N. D. Botkin, K.-H. Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Applied Mathematics and Computation, 289 (2016), 371–380 | DOI | MR | Zbl
[20] G. V. Grenkin, “Algoritm resheniya zadachi granichnogo optimalnogo upravleniya v modeli slozhnogo teploobmena”, Dalnevostochnyi matematicheskii zhurnal, 16:1 (2016), 24–38 | MR | Zbl
[21] G. V. Grenkin, A. Yu. Chebotarev, “Upravlenie slozhnym teploobmenom pri sozdanii ekstremalnykh polei”, Zh. vychisl. matem. fiz., 56:10 (2016), 1725–1732 | DOI | MR | Zbl
[22] A. E. Kovtanyuk, A. Yu. Chebotarev, “Nelokalnaya odnoznachnaya razreshimost statsionarnoi zadachi slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 56:5 (2016), 816–823 | DOI | MR | Zbl
[23] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM Math. Model. Numer. Anal., 51:6 (2017), 2511–2519 | DOI | MR | Zbl
[24] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, K.-H. Hoffmann, “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange”, J. Math. Anal. Appl., 460:2 (2018), 737–744 | DOI | MR | Zbl
[25] A. Yu. Chebotarev, R. Pinnau, “An inverse problem for a quasi-static approximate model of radiative heat transfer”, J. Math. Anal. Appl., 472:1 (2019), 737–744 | DOI | MR
[26] A. A. Amosov, “Globalnaya razreshimost odnoi nelineinoi nestatsionarnoi zadachi s nelokalnym kraevym usloviem tipa teploobmena izlucheniem”, Differentsialnye uravneniya, 41:1 (2005), 93–104 | MR | Zbl
[27] A. A. Amosov, “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 164:3 (2010), 309–344 | DOI | MR | Zbl
[28] A. A. Amosov, “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 165:1 (2010), 1–41 | DOI | MR | Zbl
[29] A. A. Amosov, “Statsionarnaya zadacha slozhnogo teploobmena v sisteme poluprozrachnykh tel s kraevymi usloviyami diffuznogo otrazheniya i prelomleniya izlucheniya”, Zh. vychisl. matem. fiz., 57:3 (2017), 510–535 | DOI | Zbl
[30] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR