The problem of radiative heat transfer without boundary conditions for the intensity of radiation
Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 119-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stationary problem of radiation-diffusion heat transfer in three-\linebreak dimensional domain within the $P_1$ - approximations of the radiation transfer equation is considered. The boundary conditions for the intensity of radiation are not specified, but there is an additional boundary condition for the temperature field. The non-local solvability of the problem is established and it is shown that the set of solutions is homeomorphic to a finite-dimensional compact. Submitted condition uniqueness of the solution. The conditions for the uniqueness of the solution are presented.
@article{DVMG_2019_19_1_a14,
     author = {A. Yu. Chebotarev and A. G. Kolobov and T. V. Pak},
     title = {The problem of radiative heat transfer without boundary conditions for the intensity of radiation},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {119--124},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a14/}
}
TY  - JOUR
AU  - A. Yu. Chebotarev
AU  - A. G. Kolobov
AU  - T. V. Pak
TI  - The problem of radiative heat transfer without boundary conditions for the intensity of radiation
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2019
SP  - 119
EP  - 124
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a14/
LA  - ru
ID  - DVMG_2019_19_1_a14
ER  - 
%0 Journal Article
%A A. Yu. Chebotarev
%A A. G. Kolobov
%A T. V. Pak
%T The problem of radiative heat transfer without boundary conditions for the intensity of radiation
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2019
%P 119-124
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a14/
%G ru
%F DVMG_2019_19_1_a14
A. Yu. Chebotarev; A. G. Kolobov; T. V. Pak. The problem of radiative heat transfer without boundary conditions for the intensity of radiation. Dalʹnevostočnyj matematičeskij žurnal, Tome 19 (2019) no. 1, pp. 119-124. http://geodesic.mathdoc.fr/item/DVMG_2019_19_1_a14/

[1] M. F. Modest, Radiative Heat Transfer, Academic Press, 2003

[2] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Unique solvability of a steady-state complex heat transfer model”, Communications in Nonlinear Science and Numerical Simulation, 20:2 (2015), 776–784 | DOI | MR | Zbl

[3] R. Pinnau, “Analysis of Optimal Boundary Control for Radiative Heat Transfer Modelled by the SP$_1$-System”, Comm. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl

[4] P.-E. Druet, “Existence of weak solutions to the time-dependent MHD-equations coupled to heat transfer with nonlocal radiation boundary conditions”, Nonlinear Anal. Real World Appl., 10:5 (2009), 2914–2936 | DOI | MR | Zbl

[5] O. Tse, R. Pinnau, N. Siedow, “Identification of temperature dependent parameters in laser–interstitial thermo therapy”, Math. Models Methods Appl. Sci., 22:9 (2012), 1–29 | DOI | MR

[6] A. E. Kovtanyuk, A. Yu. Chebotarev, “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219 (2013), 9356–9362 | MR | Zbl

[7] A. E. Kovtanyuk, A. Yu. Chebotarev, “Statsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:4 (2014), 191–199

[8] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Solvability of P1 approximation of a conductive-radiative heat transfer problem”, Appl. Math. Comput., 249 (2014), 247–252 | MR | Zbl

[9] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815 | DOI | MR | Zbl

[10] A. E. Kovtanyuk, A. Yu. Chebotarev, “Statsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Differentsialnye uravneniya, 50:12 (2014), 1590–1597 | DOI | Zbl

[11] G. V. Grenkin, A. Yu. Chebotarev, “Ustoichivost statsionarnykh reshenii diffuzionnoi modeli slozhnogo teploobmena”, Dalnevostochnyi matematicheskii zhurnal, 14:1 (2014), 18–32 | MR | Zbl

[12] G. V. Grenkin, A. Yu. Chebotarev, “Nestatsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:11 (2014), 1806–1816 | DOI | MR | Zbl

[13] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412 (2014), 520–528 | DOI | MR | Zbl

[14] G. V. Grenkin, “Optimalnoe upravlenie v nestatsionarnoi zadache slozhnogo teploobmena”, Dalnevostochnyi matematicheskii zhurnal, 14:2 (2014), 160–172 | MR | Zbl

[15] G. V. Grenkin, A. Yu. Chebotarev, “Neodnorodnaya nestatsionarnaya zadacha slozhnogo teploobmena”, Sibirskie elektronnye matematicheskie izvestiya, 12:11 (2015), 562–576 | MR | Zbl

[16] G. V. Grenkin, A. Yu. Chebotarev, “Nestatsionarnaya zadacha svobodnoi konvektsii s radiatsionnym teploobmenom”, Zh. vychisl. matem. fiz., 56:2 (2016), 275–282 | DOI | MR | Zbl

[17] G. V. Grenkin, A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433 (2016), 1243–1260 | DOI | MR | Zbl

[18] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439 (2016), 678–689 | DOI | MR | Zbl

[19] A. Yu. Chebotarev, A. E. Kovtanyuk, G. V. Grenkin, N. D. Botkin, K.-H. Hoffmann, “Nondegeneracy of optimality conditions in control problems for a radiative-conductive heat transfer model”, Applied Mathematics and Computation, 289 (2016), 371–380 | DOI | MR | Zbl

[20] G. V. Grenkin, “Algoritm resheniya zadachi granichnogo optimalnogo upravleniya v modeli slozhnogo teploobmena”, Dalnevostochnyi matematicheskii zhurnal, 16:1 (2016), 24–38 | MR | Zbl

[21] G. V. Grenkin, A. Yu. Chebotarev, “Upravlenie slozhnym teploobmenom pri sozdanii ekstremalnykh polei”, Zh. vychisl. matem. fiz., 56:10 (2016), 1725–1732 | DOI | MR | Zbl

[22] A. E. Kovtanyuk, A. Yu. Chebotarev, “Nelokalnaya odnoznachnaya razreshimost statsionarnoi zadachi slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 56:5 (2016), 816–823 | DOI | MR | Zbl

[23] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, “Inhomogeneous steady-state problem of complex heat transfer”, ESAIM Math. Model. Numer. Anal., 51:6 (2017), 2511–2519 | DOI | MR | Zbl

[24] A. Yu. Chebotarev, G. V. Grenkin, A. E. Kovtanyuk, N. D. Botkin, K.-H. Hoffmann, “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange”, J. Math. Anal. Appl., 460:2 (2018), 737–744 | DOI | MR | Zbl

[25] A. Yu. Chebotarev, R. Pinnau, “An inverse problem for a quasi-static approximate model of radiative heat transfer”, J. Math. Anal. Appl., 472:1 (2019), 737–744 | DOI | MR

[26] A. A. Amosov, “Globalnaya razreshimost odnoi nelineinoi nestatsionarnoi zadachi s nelokalnym kraevym usloviem tipa teploobmena izlucheniem”, Differentsialnye uravneniya, 41:1 (2005), 93–104 | MR | Zbl

[27] A. A. Amosov, “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 164:3 (2010), 309–344 | DOI | MR | Zbl

[28] A. A. Amosov, “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 165:1 (2010), 1–41 | DOI | MR | Zbl

[29] A. A. Amosov, “Statsionarnaya zadacha slozhnogo teploobmena v sisteme poluprozrachnykh tel s kraevymi usloviyami diffuznogo otrazheniya i prelomleniya izlucheniya”, Zh. vychisl. matem. fiz., 57:3 (2017), 510–535 | DOI | Zbl

[30] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR