On polynomials normalized on an interval
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 216-266

Voir la notice de l'article provenant de la source Math-Net.Ru

In this short communication new covering theorems, two-point distortion theorems and coefficient estimates for polynomials with a curved majorant on an interval are presented. Extremal polynomials in these therems are Chebyshev polynomials of the the second, third and forth kinds. Proofs are based on a new version of the Schwarz lemma and a univalent condition for holomorphic functions suggested by Dubinin.
@article{DVMG_2018_18_2_a9,
     author = {S. I. Kalmykov},
     title = {On polynomials normalized on an interval},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {216--266},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a9/}
}
TY  - JOUR
AU  - S. I. Kalmykov
TI  - On polynomials normalized on an interval
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 216
EP  - 266
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a9/
LA  - ru
ID  - DVMG_2018_18_2_a9
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%T On polynomials normalized on an interval
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 216-266
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a9/
%G ru
%F DVMG_2018_18_2_a9
S. I. Kalmykov. On polynomials normalized on an interval. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 216-266. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a9/