On polynomials normalized on an interval
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 216-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this short communication new covering theorems, two-point distortion theorems and coefficient estimates for polynomials with a curved majorant on an interval are presented. Extremal polynomials in these therems are Chebyshev polynomials of the the second, third and forth kinds. Proofs are based on a new version of the Schwarz lemma and a univalent condition for holomorphic functions suggested by Dubinin.
@article{DVMG_2018_18_2_a9,
     author = {S. I. Kalmykov},
     title = {On polynomials normalized on an interval},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {216--266},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a9/}
}
TY  - JOUR
AU  - S. I. Kalmykov
TI  - On polynomials normalized on an interval
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 216
EP  - 266
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a9/
LA  - ru
ID  - DVMG_2018_18_2_a9
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%T On polynomials normalized on an interval
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 216-266
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a9/
%G ru
%F DVMG_2018_18_2_a9
S. I. Kalmykov. On polynomials normalized on an interval. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 216-266. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a9/

[1] P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, v. 161, Grad. Texts in Math, Springer-Verlag, New York, 1995 | DOI | MR

[2] Q. I. Rahman, G. Schmeisser, “Analytic theory of polynomials”, London Math. Soc. Monogr. (N.S.), v. 26, The Clarendon Press, Oxford; Oxford Univ. Press, 2002, xiv+742 | MR | Zbl

[3] T. Sheil-Small, Complex polynomials, Cambridge Univ. Press, Cambridge, Cambridge Stud. Adv. Math., 75, 2002, xx+428 pp | MR

[4] V. N. Dubinin, S. I. Kalmykov,, “Ekstremalnye svoistva polinomov Chebysheva”, Dalnevost. matem. zhurn., 5:2 (2004), 169–177

[5] V. N. Dubinin, A. V. Olesov, “O primenenii konformnykh otobrazhenii k neravenstvam dlya polinomov”, Analiticheskaya teoriya chisel i teoriya funktsii. 18, Zap. nauchn. sem. POMI, v. 286, POMI, SPb., 2002, 85–102 | Zbl

[6] В. Н. Дубинин “Lemma Shvartsa i otsenki koeffitsientov dlya regulyarnykh funktsii so svobodnoi oblastyu opredeleniya”, Matem. sb., 196:11 (2005), 53–74 | DOI | MR | Zbl

[7] M. A. Lachance, “Bernstein and Markov inequalities for constrained polynomials”, Lect. Notes Math, v. 1045, 1984, 125–135 | DOI | MR | Zbl

[8] Q. I. Rahman, “On a problem of Turan about polynomials with curved majorants”, Trans. Amer. Math. Soc, 163 (1972), 447–455 | MR | Zbl

[9] S. I. Kalmykov, B. Nagy, V. Totik, “Asymptotically Sharp Markov and Schur Inequalities on General Sets”, Complex Analysis and Operator Theory, 9:6 (2014), 1287–-1302 | DOI | MR

[10] Ya. L. Geronimus, Teoriya ortogonalnykh mnogochlenov, M.: GITTL, 1950 | MR