On polynomials normalized on an interval
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 216-266
Voir la notice de l'article provenant de la source Math-Net.Ru
In this short communication new covering theorems,
two-point distortion theorems and coefficient estimates for
polynomials with a curved majorant on an interval are presented.
Extremal polynomials in these therems are Chebyshev polynomials of
the the second, third and forth kinds. Proofs are based on a new
version of the Schwarz lemma and a univalent condition for
holomorphic functions suggested by Dubinin.
@article{DVMG_2018_18_2_a9,
author = {S. I. Kalmykov},
title = {On polynomials normalized on an interval},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {216--266},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a9/}
}
S. I. Kalmykov. On polynomials normalized on an interval. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 216-266. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a9/