Protection of the network structure by autonomous vehicles
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 177-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two strategies of protection of network group of bodies from penetration of foreign object are analysed. The first strategy is based on the individual protection of each body, the second involves the use of autonomous vehicles for integrated network protection. It is shown that in the second case the ratio of the minimum number of vehicles required for detection with probability one foreign object to the number of vehicles used in the first strategy is inversely proportional to the square root of the number of elements of the network structure.
@article{DVMG_2018_18_2_a3,
     author = {M. A. Guzev and G. Sh. Tsitsiashvili and M. A. Osipova},
     title = {Protection of the network structure by autonomous vehicles},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {177--182},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a3/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - G. Sh. Tsitsiashvili
AU  - M. A. Osipova
TI  - Protection of the network structure by autonomous vehicles
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 177
EP  - 182
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a3/
LA  - ru
ID  - DVMG_2018_18_2_a3
ER  - 
%0 Journal Article
%A M. A. Guzev
%A G. Sh. Tsitsiashvili
%A M. A. Osipova
%T Protection of the network structure by autonomous vehicles
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 177-182
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a3/
%G ru
%F DVMG_2018_18_2_a3
M. A. Guzev; G. Sh. Tsitsiashvili; M. A. Osipova. Protection of the network structure by autonomous vehicles. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 177-182. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a3/

[1] A. C. Corte, A. Battista, F. dell`Isola, “Referential description of the evolution of swarm of robots interacting with the closer neighbours: Perspectives of continuum modelling via higher gradient continua”, International Journal of Non-Linear Mechanics, 80 (2016), 209–220 | DOI

[2] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, “Swarm robotics:a review from the swarm engineering perspective”, Swarm Intell., 7:1 (2013), 1–41 | DOI | MR

[3] A. Adamatzky, J. Jones, “Towards Physarum robots: computing and manipulating on water surface”, J. Bionic Eng., 5:4 (2008), 348–357 | DOI

[4] N. Bellomo, F. Brezzi, “Mathematics, complexity and multi scale features of large systems of self-propelled particles”, Math. Models Methods Appl. Sci., 25 (2016), 207–214 | DOI | MR

[5] M. A. Herrero, J. Soler, “Cooperation, competition, organization: The dynamics of interacting living populations”, Math. Models Methods Appl. Sci., 25 (2015), 2407–2415 | DOI | MR | Zbl

[6] M. Kardar, Statistical Physics of Particles, Cambridge University Press, 2007 | MR | Zbl

[7] G. M. Zaslavsky, The Physics of Chaos in Hamiltonian Systems. Second edition, Imperial College Press, 2007 | MR

[8] V. P. Maslov, “Nonlinear Averages in Economics”, Mathematical Notes, 78:3-4 (2005), 347–363 | DOI | MR | Zbl

[9] B. Alspach, “Searching and sweeping graphs: a brief survey”, Le Matematiche, 59:1, 2 (2006), 5–37 | MR

[10] P. Kafka, J. Faigl, P. Vana, “Random Inspection Tree Algorithm in visual inspection with a realistic sensing model and differential constraints”, IEEE International Conference on Robotics and Automation (ICRA), 2016, 2782–2787 | DOI

[11] C. M. Monasterio, G. Oshanin, G. Schehr, “First passages for a search by a swarm of independent random searchers”, Journal of Statistical Mechanics: Theory and Experiment, 2011:6 (2011), 6–22

[12] E. Galceran, M. Carreras, “A survey on coverage path planning for robotics?”, Robotics and Autonomous Systems, 61:12 (2013), 1258–1276 | DOI

[13] T. H. Chung, G. A. Hollinger, V. Isler, “Search and pursuit-evasion in mobile robotics”, Autonomous Robots, 31:4 (2011), 299–316 | DOI

[14] M. A. Guzev, G. Sh. Tsitsiashvili, M. A. Osipova, “Veroyatnost obnaruzheniya postoronnego mobilnogo ob'ekta neobitaemymi podvodnymi apparatami”, Materialy sedmoi vserossiiskoi nauchno-tekhnicheskoi konferentsii “Tekhnicheskie problemy osvoeniya mirovogo okeana”, 2017, 426–433

[15] M. A. Guzev, G. Sh. Tsitsiashvili, M. A. Osipova, M. S. Sporyshev, “Veroyatnost obnaruzheniya postoronnego mobilnogo ob'ekta neobitaemymi podvodnymi apparatami kak reshenie zadachi Byuffona”, Dalnevosnochnyi matematicheskii zhurnal, 2 (2017), 191–200 | Zbl

[16] M. A. Guzev, G. Sh. Tsitsiashvili, M. A. Osipova, M. S. Sporyshev, “Probability of detection of an extraneous mobile object by autonomous unmanned underwater vehicles as a solution of the Buffon problem”, ArXiv: 1801.10318 [cs.RO], 2018 | MR

[17] V. Vavilov, A. Ustinov, “Okruzhnosti na reshetkakh”, Kvant, 6 (2006) | Zbl

[18] G. H. Hardy, “On the Expression of a Number as the Sum of Two Squares”, Quart. J. Math., 46 (1915), 263–283 | MR | Zbl

[19] G. H. Hardy, Ramanujan, Twelve Lectures on Subjects Suggested by His Life and Work, Chelsea, New York, 1999 | MR

[20] M. N. Huxley, “Integer points, exponential sums and the Riemann zeta function”, Number theory for the millennium, II (2002), 275–290 | MR | Zbl