Geometric formulations of the balance laws of continuum mechanics
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 150-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

The balance laws of classical continuum mechanics are formulated in terms of differential forms (mass balance) and vector-valued differential forms (balances of momentum and energy) on the trajectory of material continuum. The traditional formulations of the laws are obtained as a consequence of the proposed formulations. Balance equations are written in a form suitable for an arbitrary observer. The formulation of the equation of motion of an ideal fluid in terms of differential forms is derived from the proposed formulations.
@article{DVMG_2018_18_2_a2,
     author = {A. I. Gudimenko},
     title = {Geometric formulations of the balance laws of continuum mechanics},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {150--176},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a2/}
}
TY  - JOUR
AU  - A. I. Gudimenko
TI  - Geometric formulations of the balance laws of continuum mechanics
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 150
EP  - 176
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a2/
LA  - ru
ID  - DVMG_2018_18_2_a2
ER  - 
%0 Journal Article
%A A. I. Gudimenko
%T Geometric formulations of the balance laws of continuum mechanics
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 150-176
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a2/
%G ru
%F DVMG_2018_18_2_a2
A. I. Gudimenko. Geometric formulations of the balance laws of continuum mechanics. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 150-176. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a2/

[1] W. Noll, “Materially uniform simple bodies with inhomogeneities”, Arch. Ration. Mech. Anal., 27 (1967), 1–32 | DOI | MR

[2] C.-C. Wang, “On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Arch. Rational Mech. Anal., 27 (1967), 33–94 | DOI | MR | Zbl

[3] M. Epstein, The Geometrical Language of Continuum Mechanics, Cambridge University Press, 2010 | MR | Zbl

[4] G. Sardanashvily, Advanced Differential Geometry for Theoreticians, LAP LAMBERT Academic Publishing, 2013 | MR

[5] D. G. B. Edelen, “A four-dimensional formulation of defect dynamics and some of its consequences”, Int. J. Engng Sci., 18 (1980), 1095–1116 | DOI | MR | Zbl

[6] A. Yavari and A. Goriely, “Riemann–Cartan geometry of nonlinear disclination mechanics”, Arch. Rational Mech. Anal., 205 (2012), 59–118 | DOI | MR | Zbl

[7] A. Yavari, “A geometric theory of growth mechanics”, J. Nonl. Sci., 20 (2010), 781–830 | DOI | MR | Zbl

[8] T. Frankel, The geometry of physics: an introduction, 2nd edition, Cambridge University Press, Cambridge, New York, 2004 | MR | Zbl

[9] R. Segev and G. Rodnay, “Cauchy’s Theorem on Manifolds”, Journal of Elasticity, 56 (1999), 129–144 | DOI | MR | Zbl

[10] R. Segev, “Geometric analysis of hyper-stresses”, International Journal of Engineering Science, 2017, 100–118 | DOI | MR | Zbl

[11] M. Schöerl and K. Schlacher, “Covariant formulation of the governing equations of continuum mechanics in an eulerian description”, J. Math. Phys., 48 (2007), 052902 | DOI | MR

[12] E. Kanso and et al, “On the geometric character of stress in continuum mechanics”, Z. angew. Math. Phys., 58 (2007), 1–14 | DOI | MR

[13] G. Romano, R. Barretta, and M. Diaco, “Geometric continuum mechanics”, Meccanica, 49:1 (2014), 111–133 | DOI | MR | Zbl

[14] S. A. Lychev, K. G. Koifman, “Geometricheskie aspekty teorii nesovmestnykh deformatsii prostykh strukturno neodnorodnykh tel peremennogo materialnogo sostava”, Dalnevost. matem. zhurn., 17:2 (2017), 221–245 | MR | Zbl

[15] L. Mangiarotti and G. Sardanashvily, Connections in classical and quantum field theory, World Scientific, Singapore, NewJersey, London, Hong Kong, 2000 | MR | Zbl

[16] G. Giachetta, L. Mangiarotti, and G. Sardanashvily, Geometric formulation of classical and quantum mechanics, World Scientific, Singapore, 2011 | Zbl

[17] C. Truesdell and R. Toupin, “The classical field theories”, Encyclopedia of Physics, ed. S. Flugge, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1960 | Zbl

[18] J. Ehlers, “The nature and structure of space-time”, The Physicist$^\prime$s Conception of Nature, ed. J. Mehra, Raidel, Dordrecht, 1973, 71–91 | DOI

[19] R. Aris, Vectors, tensors, and the basic equations of fluid mechanics, Dover, New York, 1989 | Zbl

[20] J. E. Marsden and T. J. R. Hughes, Mathematical foundations of elasticity, Dover, New York, 1983 | MR

[21] H. Luo and T. R. Bewley, “On the contravariant form of the navier–stokes equations in time-dependent curvilinear coordinate systems”, Journal of Computational Physic, 199 (2004), 355–375 | DOI | MR | Zbl

[22] Y. Chen and X. Xie, “Vorticity vector-potential method for 3d viscous incompressible flows in time-dependent curvilinear coordinates”, Journal of Computational Physics, 312 (2016), 50–81 | DOI | MR | Zbl

[23] D. iVenturi, “Convective derivatives and reynolds transport in curvilinear time-dependent coordinates”, J. Phys. A: Math. Theor., 42 (2009), 125203 | DOI | MR

[24] M. Charron, A. Zadra, and C. Girard, “Four-dimensional tensor equations for a classical fluid in an external gravitational field”, Q. J. R. Meteorol. Soc., 140 (2014), 908–916 | DOI | MR

[25] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[26] R. S. Palais, The geometrization of physics, National Tsing Hua University, Hsinchu, Taiwan, 1981

[27] R. W. R. Darling, Differential forms and connections, Cambridge University Press, 1994 | MR | Zbl

[28] J. Lee, Manifolds and Differential Geometry, v. 107, Graduate studies in mathematics, American mathematical Society, Providence, Rhode Island, 2009 | DOI | MR | Zbl

[29] I. Kolár, P. Michor, and J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993 | MR | Zbl

[30] S. Kobayashi and K. Nomizu, Foundations of differential geometry, v. 1, Interscience Publishers,, New York, London, 1963 | MR | Zbl

[31] A. Jadczyk, J. Janyška, and M. Modugno, “Galilei general relativistic quantum mechanics revisited”, Geometria, Física-Matemática e outros Ensaios, eds. A. S. Alves, F. J. Craveiro de Carvalho, and J. A. Pereira da Silva, Univerzita Coimbra, Coimbra, 1998, 253–313

[32] A. Bernal and M. Sanchez, “Leibnizian, Galilean and Newtonian structures of space-time”, J. Math. Phys., 44 (2003), 1129–1149 | DOI | MR | Zbl

[33] E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée (premiére partie)”, Ann École Norm Sup., 40 (1923), 325–412 | DOI | MR

[34] E. Cartan, “Sur les variétés à connexion affine et la théorie de la relativité généralisée (suite)”, Ann École Norm Sup., 41 (1924), 1–25 | DOI | MR

[35] M. V. Fedoryuk, Obyknovennye differentsialnye uravneniya, Nauka, M., 1985

[36] A. L. Cauchy, “Recherches sur 1'équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non élastiques”, Bull. Soc. Philomath., 1823, 9–13

[37] A. L. Cauchy, “De la pression ou tension dans un corps solide”, Ex. de math., 2 (1827), 42–56

[38] A. L. Cauchy, “Sur les équations qui expriment les conditions d'équilibre, ou les lois du mouvement intérieur d'un corps solide, élastique, ou non élastique”, Ex. de math., 3 (1828), 160–187

[39] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998

[40] A. Frolicher and A. Nijenhuis, “Theory of vector-valued differential forms.”, Part I, Indagationes Math., 18:3 (1956), 338–359 | DOI | MR