On the conformal metric of annulus in the n-dimensional Euclidean
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 233-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown by the methods of symmetrization that the geodesic with respect to the conformal metric of annulus in the Euclidean space is located into a two-dimensional sector. As a consequence, the geodesic is established in the case of points located on symmetric sphere of the annulus. Exact lower bounds are proved for the conformal metric of the annulus. A distortion theorem for quasi-regular mappings is given.
@article{DVMG_2018_18_2_a11,
     author = {E. G. Prilepkina and A. S. Afanaseva-Grigoreva},
     title = {On the conformal metric of annulus in the n-dimensional {Euclidean}},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {233--241},
     year = {2018},
     volume = {18},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a11/}
}
TY  - JOUR
AU  - E. G. Prilepkina
AU  - A. S. Afanaseva-Grigoreva
TI  - On the conformal metric of annulus in the n-dimensional Euclidean
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 233
EP  - 241
VL  - 18
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a11/
LA  - ru
ID  - DVMG_2018_18_2_a11
ER  - 
%0 Journal Article
%A E. G. Prilepkina
%A A. S. Afanaseva-Grigoreva
%T On the conformal metric of annulus in the n-dimensional Euclidean
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 233-241
%V 18
%N 2
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a11/
%G ru
%F DVMG_2018_18_2_a11
E. G. Prilepkina; A. S. Afanaseva-Grigoreva. On the conformal metric of annulus in the n-dimensional Euclidean. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/DVMG_2018_18_2_a11/

[1] M. Vuorinen, “Conformal geometry and quasiregular mappings”, Lecture Notes in Mathematics, Springer-Verlag, 1988 | DOI | MR

[2] I. S. Gal, “Conformally invariant metrics and uniform structures”, Indag. Math., 22 (1960), 218–244 | DOI | MR

[3] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[4] A. Yu. Solynin, “Continuous symmetrization via polarization”, Algebra i analiz, 24:1 (2012), 157–222 | MR

[5] J. Sarvas, “Symmetrization of condensers in n - space”, Ann. Acad. Sci. Fenn, Ser AI, 522 (1972), 1–44 | MR

[6] E. G. Akhmedzyanova, “Simmetrizatsiya otnositelno gipersfery”, Dalnevost. matem. sb., 1995, no. 1, 40–50 | Zbl

[7] V. N. Dubinin, “Preobrazovanie kondensatorov v prostranstve”, Dokl. AN SSSR, 296 (1987), 18–20

[8] E. V. Kostyuchenko, E. G. Prilepkina, “O polyarizatsii otnositelno gipersfery”, Dalnevost. matem. zhurn., 5:1 (2004), 22–29 | MR

[9] A. V. Sychev, Moduli i prostranstvennye kvazikonformnye otobrazheniya, Nauka, Moskva, 1983

[10] B. E. Levitskii, “K-simmetrizatsiya i ekstremalnye koltsa”, V sb. “Matematicheskii analiz”, 1971, 35–40 | MR

[11] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, Moskva, 1973