Boundary inverse problem for conductive-radiative equations of heat transfer
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 75-84

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary inverse problem of finding the reflecting properties of the boundary region for stationary radiation-conductive heat transfer equations in the three-dimensional region is considered. The existence of a quasi-solution of the inverse problem is proved and an optimality system is obtained. An algorithm for solving a problem is presented, the effectiveness of which is illustrated by numerical examples.
@article{DVMG_2018_18_1_a9,
     author = {P. R. Mesenev and A. Yu. Chebotarev},
     title = {Boundary inverse problem for conductive-radiative equations of heat transfer},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {75--84},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a9/}
}
TY  - JOUR
AU  - P. R. Mesenev
AU  - A. Yu. Chebotarev
TI  - Boundary inverse problem for conductive-radiative equations of heat transfer
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 75
EP  - 84
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a9/
LA  - ru
ID  - DVMG_2018_18_1_a9
ER  - 
%0 Journal Article
%A P. R. Mesenev
%A A. Yu. Chebotarev
%T Boundary inverse problem for conductive-radiative equations of heat transfer
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 75-84
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a9/
%G ru
%F DVMG_2018_18_1_a9
P. R. Mesenev; A. Yu. Chebotarev. Boundary inverse problem for conductive-radiative equations of heat transfer. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 75-84. http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a9/