On the distribution of real algebraic numbers of equal height
Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 56-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we find the asymptotic number of algebraic numbers of fixed degree $n\ge 1$ and height $H$ lying in an interval $I\subseteq\mathbb{R}$ as $H\to\infty$.
@article{DVMG_2018_18_1_a7,
     author = {D. V. Koleda},
     title = {On the distribution of real algebraic numbers of equal height},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {56--70},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a7/}
}
TY  - JOUR
AU  - D. V. Koleda
TI  - On the distribution of real algebraic numbers of equal height
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2018
SP  - 56
EP  - 70
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a7/
LA  - ru
ID  - DVMG_2018_18_1_a7
ER  - 
%0 Journal Article
%A D. V. Koleda
%T On the distribution of real algebraic numbers of equal height
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2018
%P 56-70
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a7/
%G ru
%F DVMG_2018_18_1_a7
D. V. Koleda. On the distribution of real algebraic numbers of equal height. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 56-70. http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a7/

[1] S.-J. Chern, J. D. Vaaler, “The distribution of values of {M}ahler's measure”, J. Reine Angew. Math., 540 (2001), 1–47 | DOI | MR | Zbl

[2] D. Masser, J. D. Vaaler, “Counting algebraic numbers with large height {I}”, Diophantine Approximation, Dev. Math., 16, Springer, Vienna, 2008, 237–243 | MR | Zbl

[3] D. Masser, J. D. Vaaler, “Counting algebraic numbers with large height. {II}”, Trans. Amer. Math. Soc., 359:1 (2007), 427–445 | DOI | MR | Zbl

[4] R. Grizzard, J. Gunther, “Slicing the stars: counting algebraic numbers, integers, and units by degree and height”, Algebra Number Theory, 11:6 (2017), 1385–1436 | DOI | MR | Zbl

[5] H. Brown, K. Mahler, “A generalization of {F}arey sequences: {S}ome exploration via the computer”, J. Number Theory, 3:3 (1971), 364–370 | DOI | MR | Zbl

[6] D. U. Kalyada, “Ab razmerkavanni rechaisnykh algebraichnykh likay̆ dadzenai stupeni”, Doklady NAN Belarusi, 56:3 (2012), 28–33 | MR | Zbl

[7] D. V. Koleda, “O raspredelenii deistvitelnykh algebraicheskikh chisel vtoroi stepeni”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2013, no. 3, 54–63

[8] D. Koleda, “On the density function of the distribution of real algebraic numbers”, J. Théor. Nombres Bordeaux, 29:1 (2017), 179–200 | DOI | MR | Zbl

[9] D. N. Zaporozhets, “Sluchainye polinomy i geometricheskaya veroyatnost”, Doklady Akademii nauk, 400:3 (2005), 299–303 | MR

[10] F. Götze, D. V. Koleda, D. N. Zaporozhets, “Correlations between real conjugate algebraic numbers”, Chebyshevskii Sb., 16:4 (2015), 90–99 | MR

[11] A. Dubickas, “On the number of reducible polynomials of bounded naive height”, Manuscripta Mathematica, 144:3–4 (2014), 439–456 | DOI | MR | Zbl

[12] H. Davenport, “On a principle of {L}ipschitz”, J. Lond. Math. Soc., 26:3 (1951), 179–183 | DOI | MR | Zbl

[13] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR

[14] V. V. Prasolov, Mnogochleny, 3-e izd., ispr., MTsNMO, M., 2003