Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2018_18_1_a7, author = {D. V. Koleda}, title = {On the distribution of real algebraic numbers of equal height}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {56--70}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a7/} }
D. V. Koleda. On the distribution of real algebraic numbers of equal height. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 56-70. http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a7/
[1] S.-J. Chern, J. D. Vaaler, “The distribution of values of {M}ahler's measure”, J. Reine Angew. Math., 540 (2001), 1–47 | DOI | MR | Zbl
[2] D. Masser, J. D. Vaaler, “Counting algebraic numbers with large height {I}”, Diophantine Approximation, Dev. Math., 16, Springer, Vienna, 2008, 237–243 | MR | Zbl
[3] D. Masser, J. D. Vaaler, “Counting algebraic numbers with large height. {II}”, Trans. Amer. Math. Soc., 359:1 (2007), 427–445 | DOI | MR | Zbl
[4] R. Grizzard, J. Gunther, “Slicing the stars: counting algebraic numbers, integers, and units by degree and height”, Algebra Number Theory, 11:6 (2017), 1385–1436 | DOI | MR | Zbl
[5] H. Brown, K. Mahler, “A generalization of {F}arey sequences: {S}ome exploration via the computer”, J. Number Theory, 3:3 (1971), 364–370 | DOI | MR | Zbl
[6] D. U. Kalyada, “Ab razmerkavanni rechaisnykh algebraichnykh likay̆ dadzenai stupeni”, Doklady NAN Belarusi, 56:3 (2012), 28–33 | MR | Zbl
[7] D. V. Koleda, “O raspredelenii deistvitelnykh algebraicheskikh chisel vtoroi stepeni”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2013, no. 3, 54–63
[8] D. Koleda, “On the density function of the distribution of real algebraic numbers”, J. Théor. Nombres Bordeaux, 29:1 (2017), 179–200 | DOI | MR | Zbl
[9] D. N. Zaporozhets, “Sluchainye polinomy i geometricheskaya veroyatnost”, Doklady Akademii nauk, 400:3 (2005), 299–303 | MR
[10] F. Götze, D. V. Koleda, D. N. Zaporozhets, “Correlations between real conjugate algebraic numbers”, Chebyshevskii Sb., 16:4 (2015), 90–99 | MR
[11] A. Dubickas, “On the number of reducible polynomials of bounded naive height”, Manuscripta Mathematica, 144:3–4 (2014), 439–456 | DOI | MR | Zbl
[12] H. Davenport, “On a principle of {L}ipschitz”, J. Lond. Math. Soc., 26:3 (1951), 179–183 | DOI | MR | Zbl
[13] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR
[14] V. V. Prasolov, Mnogochleny, 3-e izd., ispr., MTsNMO, M., 2003