Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2018_18_1_a1, author = {P. V. Bibikov}, title = {On the subgroups of birational contact maps and the {Kartan--Keller's} conjecture}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {9--17}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a1/} }
TY - JOUR AU - P. V. Bibikov TI - On the subgroups of birational contact maps and the Kartan--Keller's conjecture JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2018 SP - 9 EP - 17 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a1/ LA - ru ID - DVMG_2018_18_1_a1 ER -
P. V. Bibikov. On the subgroups of birational contact maps and the Kartan--Keller's conjecture. Dalʹnevostočnyj matematičeskij žurnal, Tome 18 (2018) no. 1, pp. 9-17. http://geodesic.mathdoc.fr/item/DVMG_2018_18_1_a1/
[1] B. Kriglikov, V. Lychagin, “Global Lie-Tresse theorem”, Selecta Mathematica, New Series, 22:3 (2016), 1357–1411 | DOI | MR
[2] P. Bibikov, V. Lychagin, “$\mathrm{GL}_2(\mathbb{C})$-orbits of binary rational forms”, Lobachevskii Journal of Mathematics, 32:1 (2011), 95–102 | DOI | MR | Zbl
[3] P. V. Bibikov, V. V. Lychagin, “$\mathrm{GL}_3(\mathbb{C})$-orbity ratsionalnykh ternarnykh form”, DAN, 438:4 (2011), 295–297 | MR
[4] P. Bibikov, V. Lychagin, “Klassifikatsiya lineinykh deistvii algebraicheskikh grupp na prostranstvakh odnorodnykh form”, DAN, 442:6 (2012), 732–735 | MR | Zbl
[5] P. Bibikov, V. Lychagin, “On differential invariants of actions of semisimple Lie groups”, J. Geometry and Physics, 2014, no. 85, 99–105 | DOI | MR | Zbl
[6] P. Bibikov, V. Lychagin, “Differential Contra Algebraic Invariants: Applications to Classical Algebraic Problems”, Lobachevskii Journal of Mathematics, 37:1 (2016), 36–49 | DOI | MR | Zbl
[7] P. Bibikov, “Zadacha Li i differentsialnye invarianty ODU vida $y'' = F(x,y)$”, Funktsionalnyi analiz i ego prilozheniya, 51:4 (2017) | DOI | MR | Zbl
[8] P. Bibikov, “Generalized Lie Problem and Differential Invariants for the Third Order ODEs”, Lobachevskii Journal of Mathematics, 38:4 (2017), 622–629 | DOI | MR | Zbl
[9] P. Bibikov, A. Malakhov, “On Lie problem and differential invariants for the subgroup of the plane Cremona group”, Journal of Geometry and Physics, 2017, no. 121, 72–82 | DOI | MR | Zbl
[10] E. Ferapontov, M. Pavlov, R. Vitolo, “Towards the Classification of Homogeneous Third-Order Hamiltonian Operators”, International Mathematics Research Notices, 2016:22 (2016), 6829-6855 | MR
[11] Yu. Galitski, D. Timashev, “On classification of metabelian Lie algebras”, Journal of Lie Theory, 9:1 (1999), 125–156 | MR | Zbl
[12] D. Alekseevskii, A. Vinogradov, V. Lychagin, “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Geometriya – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 28, VINITI, M., 1988, 5–289
[13] P. Bibikov, “Differential Invariants and Contact Classification of Ordinary Differential Equations”, Lobachevskii Journal of Mathematics, 36:3 (2015), 245–249 | DOI | MR | Zbl
[14] F. Klein, Vorlesungen über höhere Geometrie, Springer, Berlin, 1926 | MR | Zbl
[15] O. Keller, “Zur Theorie der ebenen Berührungstransformationen I”, Math. Ann., 120 (1947), 650–675 | DOI | MR
[16] M. Gizatullin, “Klein’s conjecture for contact automorphisms of the three-dimensional affine space”, Michigan Math. J., 2008, no. 58, 89–98 | DOI | MR | Zbl
[17] V. Iskovskikh, “Obrazuyuschie v dvumernoi gruppe Kremony nad nezamknutym polem”, Teoriya chisel, algebra, matematicheskii analiz i ikh prilozheniya, Sb. st. Posvyaschaetsya 100-letiyu so dnya rozhdeniya Ivana Matveevicha Vinogradova, Tr. MIAN, 200, Nauka, M., 1991, 157–170
[18] V. Arnold, Matematicheskie metody v klassicheskoi mekhanike, Nauka, M., 1989 | MR
[19] V. Popov, “Algebraic groups and the Cremona group”, Oberwolfach Reports, 10:2 (2013), 1053–1055
[20] P. Bibikov, “On symplectization of 1-jet space and differential invariants of point pseudogroup”, J. Geometry and Physics, 2014, no. 85, 81–87 | DOI | MR | Zbl