Ranked analysis of the life cycle of polities
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 180-190

Voir la notice de l'article provenant de la source Math-Net.Ru

Many researchers, from Edward Gibbon to Arnold Toynbee, were interested in how large polities would emerge and collapse. Traditionally, the history of empires was considered both in temporal and spatial dynamics. This article focuses on the study of the external manifestations of polities' structural features which may be expressed by a limited set of mathematical curves described by the specified Zipf's law. An ideal Zipf's curve is characteristic of the classical empires with complex economies (China, Rome, and others). However, the curves of some empires have a distinctive feature – an ‘imperial tail’. The simpler the structure of large polities is, the closer is the line describing their livelihoods to a right line.
@article{DVMG_2017_17_2_a5,
     author = {M. A. Guzev and N. N. Kradin and E. Y. Nikitina},
     title = {Ranked analysis of the life cycle of polities},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {180--190},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a5/}
}
TY  - JOUR
AU  - M. A. Guzev
AU  - N. N. Kradin
AU  - E. Y. Nikitina
TI  - Ranked analysis of the life cycle of polities
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 180
EP  - 190
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a5/
LA  - ru
ID  - DVMG_2017_17_2_a5
ER  - 
%0 Journal Article
%A M. A. Guzev
%A N. N. Kradin
%A E. Y. Nikitina
%T Ranked analysis of the life cycle of polities
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 180-190
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a5/
%G ru
%F DVMG_2017_17_2_a5
M. A. Guzev; N. N. Kradin; E. Y. Nikitina. Ranked analysis of the life cycle of polities. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 180-190. http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a5/