Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2017_17_2_a11, author = {A. V. Shutov and E. V. Kolomeikina}, title = {On a number of polyhex plane tilings}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {257--264}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a11/} }
A. V. Shutov; E. V. Kolomeikina. On a number of polyhex plane tilings. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 257-264. http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a11/
[1] D. Klarner, “A Cell growth problems”, Cand. J. Math., 19 (1967), 851–863 | DOI | MR | Zbl
[2] M. Gardner, Puteshestvie vo vremeni, Mir, M, 1990 | MR
[3] S. Golomb, Polimino, Mir, M, 1975
[4] J. Myers http://www.srcf.ucam.org/~jsm28/ tiling/
[5] A. V. Maleev, “Algorithm and computer-program search for variants of polyhex packing in plane”, Crystallography Reports, 60:6 (2015), 986–992 | DOI
[6] H. Fukuda, N. Mutoh, G. Nakamura, D. Schattschneider, “Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry”, KyotoCGGT LNCS 4535 H. Ito et al. (Eds.), Springer-Verlag, Berlin, 2008, 68–78 | MR | Zbl
[7] M. Gardner, “Ch. 11. Polyhexes and Polyaboloes.”, Mathematical Magic Show, New York, 1978, 146–159
[8] J. V. Knop, K. Szymanski, Ž. Jeričević, N. Trinajstić, “On the total number of polyhexes”, Match: Commun. Math. Chem., 16 (1984), 119–134 | Zbl
[9] D. A. Klarner, R. L. Rivest, “A procedure for improving the upper bound for the number of n-ominoes”, Canad. J. Math., 25 (1973), 585–602 | DOI | MR | Zbl
[10] F. Harary, “The cell growth problem and its attempted solutions”, Beitrage zur Grathen-theorie, Teubner, Leipzig, 1968, 49–60
[11] R. C. Read, “Contributions to the cell-growth problem”, Canad. J. Math., 14 (1962), 1–20 | DOI | MR | Zbl
[12] H. Fukuda, N. Mutoh, G. Nakamura, D. Schattschneider, “A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry”, Graphs and Combinatorics, 23 (2007), 259–267 | DOI | MR | Zbl
[13] J. R. Dias, “A Periodic Table for Polycyclic Aromatic Hydrocarbons. 1. Isomer Enumeration of Fused Polycyclic Aromatic Hydrocarbon”, J. Chem. Inf. Comput. Sci., 22 (1982), 15-22 | DOI
[14] J. R. Dias, “A Periodic Table for Polycyclic Aromatic Hydrocarbons. 2. Polycyclic Aromatic Hydrocarbons Conteining Tetragonal, Pentagonal”, J. Chem. Inf. Comput. Sci., 22 (1982), 15-22 | DOI
[15] M. Gardner, Matematicheskie golovolomki i razvlecheniya, Mir, M, 1999
[16] M. Gardner, Matematicheskie dosugi, Mir, M, 1972
[17] M. Gardner, Matematicheskie novelly, Mir, M, 1974
[18] G. C. Rhoads, “Planar tilings by polyominoes, polyhexes, and polyiamonds”, Journal of Computational and Applied Mathematics, 174 (2005), 329-–353 | DOI | MR | Zbl
[19] A. V. Maleev, A. V. Shutov, “O chisle translyatsionnykh razbienii ploskosti na polimino”, Trudy IX Vserossiiskoi nauchnoi shkoly “Matematicheskie issledovaniya v estestvennykh naukakh”, Apatity, 2013, 101-–106
[20] S. Brlek, A. Frosini, S. Rinaldi, L. Vuillon, “Tilings by translation: enumeration by a rational language approach”, The electronic journal of combinatorics, 13 (2006) | MR | Zbl
[21] A. V. Shutov, E. V. Kolomeikina, “Otsenka chisla reshetchatykh razbienii ploskosti na tsentralno-simmetrichnye polimino zadannoi ploschadi”, Modelirovanie i Analiz Informatsionnykh Sistem, 20 (2014), 148-–157, Yaroslavl
[22] D. Schattschneider, “Will it Tile? Try the Conway Criterion!”, Mathematics Magazine, 53:4 (1980), 224–233 | DOI | MR | Zbl
[23] H. Duminil-Copin, S. Smirnov, “The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$”, Annals of Mathematics, 175:3 (2012), 1653–1665 | DOI | MR | Zbl
[24] Yu. V. Nesterenko, A. I. Galochkin, A. B. Shidlovskii, Vvedenie v teoriyu chisel, Izdatelstvo Moskovskogo Universiteta, M, 1984 | MR