On a number of polyhex plane tilings
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 257-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

A tiling is called a lattice tiling if there is a group of translations which acts on the set of the tiles transitively. In the paper the low and upper bounds for the number of lattice tilings of plane with centrally symmetrical polyhexes are found.
@article{DVMG_2017_17_2_a11,
     author = {A. V. Shutov and E. V. Kolomeikina},
     title = {On a number of polyhex plane tilings},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {257--264},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a11/}
}
TY  - JOUR
AU  - A. V. Shutov
AU  - E. V. Kolomeikina
TI  - On a number of polyhex plane tilings
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 257
EP  - 264
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a11/
LA  - ru
ID  - DVMG_2017_17_2_a11
ER  - 
%0 Journal Article
%A A. V. Shutov
%A E. V. Kolomeikina
%T On a number of polyhex plane tilings
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 257-264
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a11/
%G ru
%F DVMG_2017_17_2_a11
A. V. Shutov; E. V. Kolomeikina. On a number of polyhex plane tilings. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 2, pp. 257-264. http://geodesic.mathdoc.fr/item/DVMG_2017_17_2_a11/

[1] D. Klarner, “A Cell growth problems”, Cand. J. Math., 19 (1967), 851–863 | DOI | MR | Zbl

[2] M. Gardner, Puteshestvie vo vremeni, Mir, M, 1990 | MR

[3] S. Golomb, Polimino, Mir, M, 1975

[4] J. Myers http://www.srcf.ucam.org/~jsm28/ tiling/

[5] A. V. Maleev, “Algorithm and computer-program search for variants of polyhex packing in plane”, Crystallography Reports, 60:6 (2015), 986–992 | DOI

[6] H. Fukuda, N. Mutoh, G. Nakamura, D. Schattschneider, “Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry”, KyotoCGGT LNCS 4535 H. Ito et al. (Eds.), Springer-Verlag, Berlin, 2008, 68–78 | MR | Zbl

[7] M. Gardner, “Ch. 11. Polyhexes and Polyaboloes.”, Mathematical Magic Show, New York, 1978, 146–159

[8] J. V. Knop, K. Szymanski, Ž. Jeričević, N. Trinajstić, “On the total number of polyhexes”, Match: Commun. Math. Chem., 16 (1984), 119–134 | Zbl

[9] D. A. Klarner, R. L. Rivest, “A procedure for improving the upper bound for the number of n-ominoes”, Canad. J. Math., 25 (1973), 585–602 | DOI | MR | Zbl

[10] F. Harary, “The cell growth problem and its attempted solutions”, Beitrage zur Grathen-theorie, Teubner, Leipzig, 1968, 49–60

[11] R. C. Read, “Contributions to the cell-growth problem”, Canad. J. Math., 14 (1962), 1–20 | DOI | MR | Zbl

[12] H. Fukuda, N. Mutoh, G. Nakamura, D. Schattschneider, “A Method to Generate Polyominoes and Polyiamonds for Tilings with Rotational Symmetry”, Graphs and Combinatorics, 23 (2007), 259–267 | DOI | MR | Zbl

[13] J. R. Dias, “A Periodic Table for Polycyclic Aromatic Hydrocarbons. 1. Isomer Enumeration of Fused Polycyclic Aromatic Hydrocarbon”, J. Chem. Inf. Comput. Sci., 22 (1982), 15-22 | DOI

[14] J. R. Dias, “A Periodic Table for Polycyclic Aromatic Hydrocarbons. 2. Polycyclic Aromatic Hydrocarbons Conteining Tetragonal, Pentagonal”, J. Chem. Inf. Comput. Sci., 22 (1982), 15-22 | DOI

[15] M. Gardner, Matematicheskie golovolomki i razvlecheniya, Mir, M, 1999

[16] M. Gardner, Matematicheskie dosugi, Mir, M, 1972

[17] M. Gardner, Matematicheskie novelly, Mir, M, 1974

[18] G. C. Rhoads, “Planar tilings by polyominoes, polyhexes, and polyiamonds”, Journal of Computational and Applied Mathematics, 174 (2005), 329-–353 | DOI | MR | Zbl

[19] A. V. Maleev, A. V. Shutov, “O chisle translyatsionnykh razbienii ploskosti na polimino”, Trudy IX Vserossiiskoi nauchnoi shkoly “Matematicheskie issledovaniya v estestvennykh naukakh”, Apatity, 2013, 101-–106

[20] S. Brlek, A. Frosini, S. Rinaldi, L. Vuillon, “Tilings by translation: enumeration by a rational language approach”, The electronic journal of combinatorics, 13 (2006) | MR | Zbl

[21] A. V. Shutov, E. V. Kolomeikina, “Otsenka chisla reshetchatykh razbienii ploskosti na tsentralno-simmetrichnye polimino zadannoi ploschadi”, Modelirovanie i Analiz Informatsionnykh Sistem, 20 (2014), 148-–157, Yaroslavl

[22] D. Schattschneider, “Will it Tile? Try the Conway Criterion!”, Mathematics Magazine, 53:4 (1980), 224–233 | DOI | MR | Zbl

[23] H. Duminil-Copin, S. Smirnov, “The connective constant of the honeycomb lattice equals $\sqrt{2+\sqrt2}$”, Annals of Mathematics, 175:3 (2012), 1653–1665 | DOI | MR | Zbl

[24] Yu. V. Nesterenko, A. I. Galochkin, A. B. Shidlovskii, Vvedenie v teoriyu chisel, Izdatelstvo Moskovskogo Universiteta, M, 1984 | MR