Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2017_17_1_a8, author = {K. Shapovalova and V. Yu. Kapitan and A. G. Makarov and Yu. A. Shevchenko}, title = {Methods of canonical and multicanonical sempling of phase space of vector models}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {124--130}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a8/} }
TY - JOUR AU - K. Shapovalova AU - V. Yu. Kapitan AU - A. G. Makarov AU - Yu. A. Shevchenko TI - Methods of canonical and multicanonical sempling of phase space of vector models JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2017 SP - 124 EP - 130 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a8/ LA - ru ID - DVMG_2017_17_1_a8 ER -
%0 Journal Article %A K. Shapovalova %A V. Yu. Kapitan %A A. G. Makarov %A Yu. A. Shevchenko %T Methods of canonical and multicanonical sempling of phase space of vector models %J Dalʹnevostočnyj matematičeskij žurnal %D 2017 %P 124-130 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a8/ %G ru %F DVMG_2017_17_1_a8
K. Shapovalova; V. Yu. Kapitan; A. G. Makarov; Yu. A. Shevchenko. Methods of canonical and multicanonical sempling of phase space of vector models. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 124-130. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a8/
[1] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, “Equation of state calculations by fast computing machines”, The journal of chemical physics, 21:6 (1953), 1087–1092, AIP Publishing | DOI | MR
[2] D. P. Landau, K. Binder, A guide to Monte Carlo simulations in statistical physics, Cambridge Univ. Press, 2000, 384 pp. | MR | Zbl
[3] R. Swendsen and J. Wang, “Replica Monte Carlo Simulation of Spin-Glasses”, Physical review letters, 57:21 (1986), 2607 | DOI | MR
[4] C. J. Geyer, “Markov chain Monte Carlo maximum likelihood”, Interface Foundation of North America, 1991
[5] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applications, and new perspectives”, Physical Chemistry Chemical Physics, 7 (2005), 3910 | DOI
[6] F. Wang and D. P. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states”, Physical review letters, 86:10 (2001), 2050 | DOI
[7] T. Vogel, Y. W. Li, T. Wüst, D. P. Landau, “Generic, hierarchical framework for massively parallel Wang-Landau sampling”, Physical review letters, 110:21 (2013), 210603, APS | DOI
[8] T. Vogel, Y. W. Li, T. Wüst and D. P. Landau, “Scalable replica-exchange framework for Wang-Landau sampling”, Physical Review E, 90:2 (2014), 023302 | DOI
[9] L. Shchur, “Wang-Landau algorithm: random walking on the energy spectrum”, Computational technologies in the natural sciences: methods of supercomputer modeling, ed. R. R. Nazirova, L. N. Shchura, M.: IKI RAS, 2014, 160–166