Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 48-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigated the regular solvability of conjugate problem (generalized diffraction problem) for third order equation with multiple characteristics and alternating function on the highest derivative. This function has a discontinuity of the first kind and changes sign when passing the point of discontinuity. The existence and uniqueness of regular solutions are proved by the regularization and continuation methods.
@article{DVMG_2017_17_1_a4,
     author = {A. I. Kozhanov and S. V. Potapova},
     title = {Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {48--58},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a4/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - S. V. Potapova
TI  - Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 48
EP  - 58
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a4/
LA  - ru
ID  - DVMG_2017_17_1_a4
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A S. V. Potapova
%T Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 48-58
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a4/
%G ru
%F DVMG_2017_17_1_a4
A. I. Kozhanov; S. V. Potapova. Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 48-58. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a4/

[1] L. Cattabriga, Annali della scuola normale Superiore di pisa e mat, 13:2 (1956), 163–203 | MR

[2] L. Cattabriga, “Potenziali di linea e di dominio per equazioni non paraboliche in due variabili a characteristiche multiple”, Rend. Semin. Mat. Univ. Padova, 3 (1961), 1–45 | MR

[3] T. D. Dzhuraev, Kraevye zadachi dlya uravneniya smeshannogo i smeshanno-sostavnogo tipov, FAN, Tashkent, 1986 | MR

[4] S. Abdinazarov, “Obschie kraevye zadachi dlya uravneniya tretego poryadka s kratnymi kharakteristikami”, Differentsialnye uravneniya, 17 (1981), 3–12 | MR | Zbl

[5] M. Mascarello, L. Rodino, Partial differentional equations with multiple characteristics, Wiley, Berlin, 1997 | MR

[6] M. Mascarello, L. Rodino, M. Tri, “Partial differentional operators with multiple symplectic characteristics”, Partial differential equations and spectral theory, ed. M. Demuth, B.-W. Schulze, Birkhauser, Basel, 2001, 293–297 | MR | Zbl

[7] L. Rodino, A. Oliaro, “Solvability for semilinear PDE with multiple characteristics”, Evolution equations, v. 60, ed. R. Picard, M. Reissig, W. Zajaczkowski, Banach Center Publ., Warsaw, 2003, 295–303 | MR | Zbl

[8] A. I. Kozhanov, “O razreshimosti nelokalnoi po vremeni zadachi dlya odnogo uravneniya s kratnymi kharakteristikami”, Mat. zametki YaGU, 8:2 (2001), 27–40 | Zbl

[9] A. I. Kozhanov, “Composite Type Equations and Inverse Problems”, Utrecht, the Netherlands, VSP, 1999 | MR

[10] A. R. Khashimov, A. M. Turginov, “O nekotorykh nelokalnykh zadachakh dlya uravneniya tretego poryadka s kratnymi kharakteristikami”, Mat. zametki SVFU, 21:1 (2014), 69–74 | MR | Zbl

[11] G. G. Doronin, N. A. Larkin, E. Tronco, “Exponential Decay of Weak Solutions for the Zakharov-Kuznetsov Equation”, Nonclassical equations of mathematical physics. 1ed. Novosibirsk, 446 (2012), 5–13

[12] A. M. Abdrakhmanov, A. I. Kozhanov, “Zadacha s nelokalnym granichnym usloviem dlya odnogo klassa uravnenii nechetnogo poryadka”, Izvestiya vuzov. Matematika, 5 (2007), 3–12 | MR | Zbl

[13] N. A. Larkin, “Korteweg–de Vries and Kuramoto–Sivashinsky equations in bounded domains”, J. Math. Anal. Appl., 297:2 (2004), 169–185 | DOI | MR | Zbl

[14] B. A. Bubnov, “Generalized boundary value problems for Korteweg–de Vries equation in bounded domains”, Differential Equations, 15 (1979), 17–21 | MR | Zbl

[15] B. B. Khablov, O nekotorykh korrektnykh postanovkakh granichnykh zadach dlya uravneniya Kortevega de Friza, Preprint In-ta matem. SO AN SSSR, Novosibirsk, 1979

[16] A. V. Faminskii, N. A. Larkin, “Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval”, Electronic Journal of Diff. Equations, 2010, 1–20 | MR

[17] A. V. Faminskii, N. A. Larkin, “Odd-order quasilinear evolution equations posed on a bounded interval”, Bol. Soc. Paran. Mat., 28:1 (2010), 67–77 | MR | Zbl

[18] Sh. Cui, Sh. Tao, “Strichartz estimates for dispersive equations and solvability of Kawahara equation”, J. Math. Anal. Appl., 304 (2005), 683–702 | DOI | MR | Zbl

[19] N. A. Larkin, “Correct initial boundary value problems for dispersive equations”, J. Math. Anal. Appl., 344:2 (2008), 1079–1092 | DOI | MR | Zbl

[20] S. Abdinazarov, A. Khashimov, “Kraevye zadachi dlya uravneniya s kratnymi kharakteristikami i razryvnymi koeffitsientami”, Uz. mat. zhurn., 1993, no. 1, 3–12 | MR

[21] A. Khashimov, “Ob odnoi zadache dlya uravneniya smeshannogo tipa s kratnymi kharakteristikami”, Uz. mat. zhurn., 1995, no. 2, 95–97

[22] V. I. Antipin, “Razreshimost kraevoi zadachi dlya uravneniya tretego poryadka s menyayuschimsya napravleniem vremeni”, Matematicheskie zametki YaGU, 18:1 (2011), 8–15 | Zbl

[23] V. I. Antipin, “Razreshimost kraevoi zadachi dlya operatorno-differentsialnykh uravnenii smeshannogo tipa”, Sibirskii matematicheskii zhurnal, 54:2 (2013), 245–257 | MR | Zbl

[24] S. G. Pyatkov, S. Popov, V. I. Antipin, “On solvability of boundary value problem for kinetic operator-differential equations”, Integral Equation and Operator Theory, 80:4 (2014), 557–580 | DOI | MR | Zbl

[25] M. Gevrey, “Sur les equations aux derivees partielles du type parabolique”, J. Math. Appl., 9:6 (1913), 305–478

[26] N. A. Larkin, V. A. Novikov, N. N. Yanenko, Nelineinye uravneniya peremennogo tipa, Nauka, Novosibirsk, 1983 | MR

[27] S. A. Tersenov, Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, Novosibirsk, 1985 | MR

[28] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Neklassicheskie differentsialno–operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR

[29] N. V. Kislov, I. S. Pulkin, “O suschestvovanii i edinstvennosti slabogo resheniya zadachi Zhevre s obobschennymi usloviyami skleiki”, Vestnik MEI, 2002, no. 6, 88–92

[30] I. M. Petrushko, E. V. Chernykh, “O parabolicheskikh uravneniyakh $2$-go poryadka s menyayuschimsya napravleniem vremeni”, Vestnik MEI, 2003, no. 6, 85–93

[31] R. Beals, “On an equations of mixed type from electron scattering”, J. Math. Anal. Appl., 568:1 (1977), 32–45 | DOI | MR

[32] C. E. Siewert and P. E. Zweifel, “Radiative transfer, II”, J. Math. Phys., 7 (1966), 2092–2102 | DOI

[33] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR

[34] S. V. Potapova, “Boundary value problems for pseudohyperbolic equations with a variable time direction”, TWMS Journal of Pure and Applied Mathematics, 3:1 (2012), 75–91 | MR | Zbl