Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 48-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we investigated the regular solvability of conjugate problem (generalized diffraction problem) for third order equation with multiple characteristics and alternating function on the highest derivative. This function has a discontinuity of the first kind and changes sign when passing the point of discontinuity. The existence and uniqueness of regular solutions are proved by the regularization and continuation methods.
@article{DVMG_2017_17_1_a4,
     author = {A. I. Kozhanov and S. V. Potapova},
     title = {Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {48--58},
     year = {2017},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a4/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - S. V. Potapova
TI  - Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 48
EP  - 58
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a4/
LA  - ru
ID  - DVMG_2017_17_1_a4
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A S. V. Potapova
%T Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 48-58
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a4/
%G ru
%F DVMG_2017_17_1_a4
A. I. Kozhanov; S. V. Potapova. Boundary value problem for third order equation with multiple characteristics and alternating function on the highest derivative. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 48-58. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a4/

[1] L. Cattabriga, Annali della scuola normale Superiore di pisa e mat, 13:2 (1956), 163–203 | MR

[2] L. Cattabriga, “Potenziali di linea e di dominio per equazioni non paraboliche in due variabili a characteristiche multiple”, Rend. Semin. Mat. Univ. Padova, 3 (1961), 1–45 | MR

[3] T. D. Dzhuraev, Kraevye zadachi dlya uravneniya smeshannogo i smeshanno-sostavnogo tipov, FAN, Tashkent, 1986 | MR

[4] S. Abdinazarov, “Obschie kraevye zadachi dlya uravneniya tretego poryadka s kratnymi kharakteristikami”, Differentsialnye uravneniya, 17 (1981), 3–12 | MR | Zbl

[5] M. Mascarello, L. Rodino, Partial differentional equations with multiple characteristics, Wiley, Berlin, 1997 | MR

[6] M. Mascarello, L. Rodino, M. Tri, “Partial differentional operators with multiple symplectic characteristics”, Partial differential equations and spectral theory, ed. M. Demuth, B.-W. Schulze, Birkhauser, Basel, 2001, 293–297 | MR | Zbl

[7] L. Rodino, A. Oliaro, “Solvability for semilinear PDE with multiple characteristics”, Evolution equations, v. 60, ed. R. Picard, M. Reissig, W. Zajaczkowski, Banach Center Publ., Warsaw, 2003, 295–303 | MR | Zbl

[8] A. I. Kozhanov, “O razreshimosti nelokalnoi po vremeni zadachi dlya odnogo uravneniya s kratnymi kharakteristikami”, Mat. zametki YaGU, 8:2 (2001), 27–40 | Zbl

[9] A. I. Kozhanov, “Composite Type Equations and Inverse Problems”, Utrecht, the Netherlands, VSP, 1999 | MR

[10] A. R. Khashimov, A. M. Turginov, “O nekotorykh nelokalnykh zadachakh dlya uravneniya tretego poryadka s kratnymi kharakteristikami”, Mat. zametki SVFU, 21:1 (2014), 69–74 | MR | Zbl

[11] G. G. Doronin, N. A. Larkin, E. Tronco, “Exponential Decay of Weak Solutions for the Zakharov-Kuznetsov Equation”, Nonclassical equations of mathematical physics. 1ed. Novosibirsk, 446 (2012), 5–13

[12] A. M. Abdrakhmanov, A. I. Kozhanov, “Zadacha s nelokalnym granichnym usloviem dlya odnogo klassa uravnenii nechetnogo poryadka”, Izvestiya vuzov. Matematika, 5 (2007), 3–12 | MR | Zbl

[13] N. A. Larkin, “Korteweg–de Vries and Kuramoto–Sivashinsky equations in bounded domains”, J. Math. Anal. Appl., 297:2 (2004), 169–185 | DOI | MR | Zbl

[14] B. A. Bubnov, “Generalized boundary value problems for Korteweg–de Vries equation in bounded domains”, Differential Equations, 15 (1979), 17–21 | MR | Zbl

[15] B. B. Khablov, O nekotorykh korrektnykh postanovkakh granichnykh zadach dlya uravneniya Kortevega de Friza, Preprint In-ta matem. SO AN SSSR, Novosibirsk, 1979

[16] A. V. Faminskii, N. A. Larkin, “Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval”, Electronic Journal of Diff. Equations, 2010, 1–20 | MR

[17] A. V. Faminskii, N. A. Larkin, “Odd-order quasilinear evolution equations posed on a bounded interval”, Bol. Soc. Paran. Mat., 28:1 (2010), 67–77 | MR | Zbl

[18] Sh. Cui, Sh. Tao, “Strichartz estimates for dispersive equations and solvability of Kawahara equation”, J. Math. Anal. Appl., 304 (2005), 683–702 | DOI | MR | Zbl

[19] N. A. Larkin, “Correct initial boundary value problems for dispersive equations”, J. Math. Anal. Appl., 344:2 (2008), 1079–1092 | DOI | MR | Zbl

[20] S. Abdinazarov, A. Khashimov, “Kraevye zadachi dlya uravneniya s kratnymi kharakteristikami i razryvnymi koeffitsientami”, Uz. mat. zhurn., 1993, no. 1, 3–12 | MR

[21] A. Khashimov, “Ob odnoi zadache dlya uravneniya smeshannogo tipa s kratnymi kharakteristikami”, Uz. mat. zhurn., 1995, no. 2, 95–97

[22] V. I. Antipin, “Razreshimost kraevoi zadachi dlya uravneniya tretego poryadka s menyayuschimsya napravleniem vremeni”, Matematicheskie zametki YaGU, 18:1 (2011), 8–15 | Zbl

[23] V. I. Antipin, “Razreshimost kraevoi zadachi dlya operatorno-differentsialnykh uravnenii smeshannogo tipa”, Sibirskii matematicheskii zhurnal, 54:2 (2013), 245–257 | MR | Zbl

[24] S. G. Pyatkov, S. Popov, V. I. Antipin, “On solvability of boundary value problem for kinetic operator-differential equations”, Integral Equation and Operator Theory, 80:4 (2014), 557–580 | DOI | MR | Zbl

[25] M. Gevrey, “Sur les equations aux derivees partielles du type parabolique”, J. Math. Appl., 9:6 (1913), 305–478

[26] N. A. Larkin, V. A. Novikov, N. N. Yanenko, Nelineinye uravneniya peremennogo tipa, Nauka, Novosibirsk, 1983 | MR

[27] S. A. Tersenov, Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, Novosibirsk, 1985 | MR

[28] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Neklassicheskie differentsialno–operatornye uravneniya, Nauka, Novosibirsk, 2000 | MR

[29] N. V. Kislov, I. S. Pulkin, “O suschestvovanii i edinstvennosti slabogo resheniya zadachi Zhevre s obobschennymi usloviyami skleiki”, Vestnik MEI, 2002, no. 6, 88–92

[30] I. M. Petrushko, E. V. Chernykh, “O parabolicheskikh uravneniyakh $2$-go poryadka s menyayuschimsya napravleniem vremeni”, Vestnik MEI, 2003, no. 6, 85–93

[31] R. Beals, “On an equations of mixed type from electron scattering”, J. Math. Anal. Appl., 568:1 (1977), 32–45 | DOI | MR

[32] C. E. Siewert and P. E. Zweifel, “Radiative transfer, II”, J. Math. Phys., 7 (1966), 2092–2102 | DOI

[33] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1980 | MR

[34] S. V. Potapova, “Boundary value problems for pseudohyperbolic equations with a variable time direction”, TWMS Journal of Pure and Applied Mathematics, 3:1 (2012), 75–91 | MR | Zbl