Harmonic oscillator chains with exactly solvable dynamics
Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 11-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of Darboux transformation is applied to construct exactly solvable one-dimensional chains of harmonic oscillators.
@article{DVMG_2017_17_1_a1,
     author = {A. I. Gudimenko},
     title = {Harmonic oscillator chains with exactly solvable dynamics},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {11--21},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a1/}
}
TY  - JOUR
AU  - A. I. Gudimenko
TI  - Harmonic oscillator chains with exactly solvable dynamics
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2017
SP  - 11
EP  - 21
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a1/
LA  - ru
ID  - DVMG_2017_17_1_a1
ER  - 
%0 Journal Article
%A A. I. Gudimenko
%T Harmonic oscillator chains with exactly solvable dynamics
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2017
%P 11-21
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a1/
%G ru
%F DVMG_2017_17_1_a1
A. I. Gudimenko. Harmonic oscillator chains with exactly solvable dynamics. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 11-21. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a1/

[1] A. A. Maradudin, E. W Montroll, G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York, 1963 | MR

[2] A. Dhar, K. Saito, “Heat Transport in Harmonic Systems”, Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Physics, v. 921, eds. S. Lepri, Springer, 2016, 39–105 | MR

[3] I. Fujiwara, P. C. Hemmer, H. Wergeland, “Some Exact Results in the Theory of Brownian Motion”, Prog. Theor. Phya. Suppl., 37–38 (1966), 141–152 | DOI

[4] R. J. Rubin, “Momentum Autocorrelation Function of a Heavy Particle in a Finite Crystal”, Journal of the American Chemical Society, 90:12 (1968), 3061–3063 | DOI

[5] M. B. Yu, “Momentum autocorrelation function of an impurity in a classical oscillator chain with alternating masses III. Some limiting cases”, Physica A, 447 (2016), 411–421 | DOI | MR

[6] P. Mazur, E. Montroll, “Poincare Cycles, Ergodicity, and Irreversibility in Assemblies of Coupled Harmonic Oscillators”, J. Math. Phys., 1:1 (1960), 70–84 | DOI | MR | Zbl

[7] M. H. Lee, “Local Dynamics in an Infinite Harmonic Chain”, Symmetry, 8:22 (2016), 1–12 | MR

[8] M. A. Huerta, H. S. Robertson, “Entropy, Information Theory, and the Approach to Equilibrium of Coupled Harmonic Oscillator Systems”, J. Stat. Phys., 1:3 (1969), 393–414 | DOI

[9] A. J. O'Connor, “A Central Limit Theorem for the Disordered Harmonic Chain”, Commun. math. Phys., 45 (1975), 63–77 | DOI | MR | Zbl

[10] Z. Rieder, J. L. Lebowitz, E. Lieb, “Properties of a harmonic crystal in a stationary nonequilibrium state”, J. Math. Phys., 8:5 (1967), 1073–1078 | DOI

[11] R. J. Rubin, W. L. Greer, “Abnormal Lattice Thermal Conductivity of a One-Dimensional, Harmonic, Isotopically Disordered Crystal”, J. Math. Phys., 12:8 (1971), 1686–1701 | DOI

[12] F. Bonetto, J. L. Lebowitz, L. Rey-Bellet, “Fourier law: a challenge to theorists”, Mathematical Physics 2000, eds. A. Fokas, et al., Imperial College Press, London, 2000, 128 | DOI | MR | Zbl

[13] S. Lepri, R. Livi, A. Politi, “Heat Transport in Low Dimensions: Introduction and Phenomenology”, Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Physics, v. 921, eds. S. Lepri, Springer, 2016, 1–37 | MR

[14] C.-W. Chang, “Experimental Probing of Non-Fourier Thermal Conductors”, Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Physics, v. 921, eds. S. Lepri, Springer, 2016, 305–338 | MR

[15] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991 | MR | Zbl

[16] V. Spiridonov, A. Zhedanov, “Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials”, Methods and Applications of Analysis, 2:4 (1995), 369–398 | DOI | MR | Zbl

[17] V. Spiridonov, A. Zhedanov, “Discrete Reflectionless Potentials, Quantum Algebras, and $q$-Orthogonal Polynomials”, Annals of physics, 237 (1995), 126–146 | DOI | MR | Zbl