Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2017_17_1_a1, author = {A. I. Gudimenko}, title = {Harmonic oscillator chains with exactly solvable dynamics}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {11--21}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a1/} }
A. I. Gudimenko. Harmonic oscillator chains with exactly solvable dynamics. Dalʹnevostočnyj matematičeskij žurnal, Tome 17 (2017) no. 1, pp. 11-21. http://geodesic.mathdoc.fr/item/DVMG_2017_17_1_a1/
[1] A. A. Maradudin, E. W Montroll, G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York, 1963 | MR
[2] A. Dhar, K. Saito, “Heat Transport in Harmonic Systems”, Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Physics, v. 921, eds. S. Lepri, Springer, 2016, 39–105 | MR
[3] I. Fujiwara, P. C. Hemmer, H. Wergeland, “Some Exact Results in the Theory of Brownian Motion”, Prog. Theor. Phya. Suppl., 37–38 (1966), 141–152 | DOI
[4] R. J. Rubin, “Momentum Autocorrelation Function of a Heavy Particle in a Finite Crystal”, Journal of the American Chemical Society, 90:12 (1968), 3061–3063 | DOI
[5] M. B. Yu, “Momentum autocorrelation function of an impurity in a classical oscillator chain with alternating masses III. Some limiting cases”, Physica A, 447 (2016), 411–421 | DOI | MR
[6] P. Mazur, E. Montroll, “Poincare Cycles, Ergodicity, and Irreversibility in Assemblies of Coupled Harmonic Oscillators”, J. Math. Phys., 1:1 (1960), 70–84 | DOI | MR | Zbl
[7] M. H. Lee, “Local Dynamics in an Infinite Harmonic Chain”, Symmetry, 8:22 (2016), 1–12 | MR
[8] M. A. Huerta, H. S. Robertson, “Entropy, Information Theory, and the Approach to Equilibrium of Coupled Harmonic Oscillator Systems”, J. Stat. Phys., 1:3 (1969), 393–414 | DOI
[9] A. J. O'Connor, “A Central Limit Theorem for the Disordered Harmonic Chain”, Commun. math. Phys., 45 (1975), 63–77 | DOI | MR | Zbl
[10] Z. Rieder, J. L. Lebowitz, E. Lieb, “Properties of a harmonic crystal in a stationary nonequilibrium state”, J. Math. Phys., 8:5 (1967), 1073–1078 | DOI
[11] R. J. Rubin, W. L. Greer, “Abnormal Lattice Thermal Conductivity of a One-Dimensional, Harmonic, Isotopically Disordered Crystal”, J. Math. Phys., 12:8 (1971), 1686–1701 | DOI
[12] F. Bonetto, J. L. Lebowitz, L. Rey-Bellet, “Fourier law: a challenge to theorists”, Mathematical Physics 2000, eds. A. Fokas, et al., Imperial College Press, London, 2000, 128 | DOI | MR | Zbl
[13] S. Lepri, R. Livi, A. Politi, “Heat Transport in Low Dimensions: Introduction and Phenomenology”, Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Physics, v. 921, eds. S. Lepri, Springer, 2016, 1–37 | MR
[14] C.-W. Chang, “Experimental Probing of Non-Fourier Thermal Conductors”, Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer, Lecture Notes in Physics, v. 921, eds. S. Lepri, Springer, 2016, 305–338 | MR
[15] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991 | MR | Zbl
[16] V. Spiridonov, A. Zhedanov, “Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials”, Methods and Applications of Analysis, 2:4 (1995), 369–398 | DOI | MR | Zbl
[17] V. Spiridonov, A. Zhedanov, “Discrete Reflectionless Potentials, Quantum Algebras, and $q$-Orthogonal Polynomials”, Annals of physics, 237 (1995), 126–146 | DOI | MR | Zbl