Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2016_16_2_a7, author = {I. M. Novitskii}, title = {Some properties of the resolvent kernels for integral equations with}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {186--208}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a7/} }
I. M. Novitskii. Some properties of the resolvent kernels for integral equations with. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 186-208. http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a7/
[1] Siberian Math. J., 39 (1998), 781–783 | DOI | MR | Zbl
[2] V. B. Korotkov, Introduction to the algebraic theory of integral operators, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok, 2000, 79 pp. (in Russian)
[3] Siberian Adv. Math., 7 (1997), 5–17 | MR | MR | Zbl
[4] T. Carleman, Sur les équations intégrales singulières à noyau réel et symétrique, A.-B. Lundequistska Bokhandeln, Uppsala, 1923
[5] J. von Neumann, Charakterisierung des Spektrums eines Integraloperators, Actual. scient. et industr., 229, Hermann, Paris, 1935 (in German)
[6] W. J. Trjitzinsky, “Singular integral equations with complex valued kernels”, Ann. Mat. Pura Appl., 4:25 (1946), 197–254 | DOI | MR
[7] N. I. Akhiezer, “Integral operators with Carleman kernels”, Uspekhi Mat. Nauk., 2:5 (1947), 93–132 (in Russian) | MR | Zbl
[8] Monographs and Studies in Mathematics, 9, 10, Pitman Advanced Publishing Program, Boston, 1981 | MR | Zbl
[9] C. G. Costley, “On singular normal linear equations”, Can. Math. Bull., 13 (1970), 199–203 | DOI | MR | Zbl
[10] J. W. Williams, “Linear integral equations with singular normal kernels of class I”, J. Math. Anal. Appl., 68:2 (1979), 567–579 | DOI | MR | Zbl
[11] V. B. Korotkov, Integral operators, Nauka, Novosibirsk, 1983 (in Russian) | Zbl
[12] T. Kato, Perturbation theory for linear operators, Corr. print. of the 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1980 | MR | Zbl
[13] E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31, New York, 1948 | MR | Zbl
[14] Pergamon Press, Oxford-Elmsford-New York, 1982 | MR | Zbl | Zbl
[15] P. Halmos, V. Sunder, Bounded integral operators on $L^2$ spaces, Springer, Berlin, 1978 | MR
[16] M. Reed, B. Simon, Methods of modern mathematical physics. {I}. Functional analysis, rev. ed., Academic Press, San Diego, 1980 | MR | Zbl
[17] B. Misra, D. Speiser, G. Targonski, “Integral operators in the theory of scattering”, Helv. Phys. Acta, 36 (1963), 963–980 | MR | Zbl
[18] A. C. Zaanen, “An extension of Mercer's theorem on continuous kernels of positive type”, Simon Stevin, 29 (1952), 113–124 | MR | Zbl
[19] J. Buescu, “Positive integral operators in unbounded domains”, J. Math. Anal. Appl., 296:1 (2004), 244–255 | DOI | MR | Zbl
[20] Differential Equations, 28:9 (1992), 1329–1337 | MR
[21] Soviet Math. Dokl., 43:3 (1991), 874–877 | MR
[22] I. M. Novitskii, “Integral representations of linear operators by smooth Carleman kernels of Mercer type”, Proc. Lond. Math. Soc. (3), 68:1 (1994), 161–177 | DOI | MR
[23] T. Carleman, “Zur Theorie der linearen Integralgleichungen”, Math. Z., 9 (1921), 196–217 | DOI | MR | Zbl
[24] S. G. Mikhlin, “On the convergence of Fredholm series”, Doklady AN SSSR, XLII:9 (1944), 374–377 (in Russian) | MR
[25] F. Smithies, “The Fredholm theory of integral equations”, Duke Math. J., 8 (1941), 107–130 | DOI | MR