On applicability of category theory to the description of ontogeny events
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 147-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

The possibility of application of the category-theoretical formalism to the description of the fundamental molecular events of ontogeny (transcription, translation and the protein combination formation) is studied. It is shown that a correspondence between these events and the well-known category operations, pull-back and push-out, can be established. The naturalness of application of the geometrical idea of fibration to the analyses of these events is demonstrated.
@article{DVMG_2016_16_2_a3,
     author = {A. I. Gudimenko and M. A. Guzev and Yu. N. Zhuravlev},
     title = {On applicability of category theory to the description of ontogeny events},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {147--159},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a3/}
}
TY  - JOUR
AU  - A. I. Gudimenko
AU  - M. A. Guzev
AU  - Yu. N. Zhuravlev
TI  - On applicability of category theory to the description of ontogeny events
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2016
SP  - 147
EP  - 159
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a3/
LA  - ru
ID  - DVMG_2016_16_2_a3
ER  - 
%0 Journal Article
%A A. I. Gudimenko
%A M. A. Guzev
%A Yu. N. Zhuravlev
%T On applicability of category theory to the description of ontogeny events
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2016
%P 147-159
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a3/
%G ru
%F DVMG_2016_16_2_a3
A. I. Gudimenko; M. A. Guzev; Yu. N. Zhuravlev. On applicability of category theory to the description of ontogeny events. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 147-159. http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a3/

[1] Handbook of Statistical Systems Biology, eds. M. Stumpf, D. Balding, M. Girolami, Wiley, 2011 | MR | Zbl

[2] F. Hoppensteadt, Mathematical theories of populations: demographics, genetics, and epidemics, Society for Industrial Mathematics, Philadelphia, 1997 | MR

[3] J. Pastor, Mathematical Ecology of Populations and Ecosystems, Wiley-Blackwell, 2008

[4] Zh. Setubal, Zh. Meidanis, Vvedenie v vychislitelnuyu molekulyarnuyu biologiyu, RKhD, 2007

[5] R. Rosen, Essays on Life Itself, Colmbia University Press, New York, 2000

[6] M. Mesarovich, Ya. Takakhara, Obschaya teoriya sistem: matematicheskie osnovy, Mir, M., 1978 | MR

[7] S. Eilenberg, S. MacLane, “General Theory of Natural Equivalences”, Transactions of the American Mathematical Society, 58:2 (1945), 231–294, American Mathematical Society | DOI | MR | Zbl

[8] S. MacLane, Categories for the Working Mathematician, Springer, New York, 1998 | MR

[9] R. Rosen, “A relational theory of biological systems”, Bulletin of Mathematical Biology, 20:3 (1958), 245–260, Springer | MR

[10] R. Rosen, “The representation of biological systems from the standpoint of the theory of categories”, Bulletin of Mathematical Biology, 20:4 (1958), 317–341, Springer | MR

[11] A. C. Ehresmann, J.-P. Vanbremeersch, “Hierarchical evolutive systems: A mathematical model for complex systems”, Bulletin of Mathematical Biology, 49:1 (1987), 13–50, Springer | DOI | MR

[12] O. Wolkenhauer, J.-H. S. Hofmeyr, “An abstract cell model that describes the self-organization of cell function in living systems”, Journal of Theoretical Biology, 246 (2007), 461–476, Elsevier Science | DOI | MR

[13] T. Haruna, “Theory of interface: Category theory, directed networks and evolution of biological networks”, Biosystems, 114:2 (2013), 125–148, Elsevier Science | DOI

[14] N. Rashevsky, “Topology and life: In search of general mathematical principles in biology and sociology”, Bulletin of Mathematical Biology, 16:4 (1954), 317–348, Springer | MR

[15] N. Rashevskyk, Organismic Sets: Some Reflections on the Nature of Life and Society, Grosse Pointe, Michigan, 1972

[16] N. Rashevsky, “The geometrization of biology”, Bulletin of Mathematical Biology, 18:1 (1956), 31–56, Springer | MR

[17] N. Rashevsky, “A note on the geometrization of biology”, Bulletin of Mathematical Biology, 19:3 (1957), 201–204, Springer | MR

[18] Yu. N. Zhuravlev, M. A. Guzev, E. E. Skurikhin, “Modeling ontogeny in biology”, Int. J. of Advances in Computer Science $\$ Its Applications, 5 (2015), 314–320

[19] Yu. N. Zhuravlev, M. A. Guzev, A. I. Gudimenko, “Modulnaya organizatsiya biosotsialnykh sistem”, Vestnik DVO RAN, 2016, no. 2, 5–23

[20] A. I. Gudimenko, M. A. Guzev, “Ob invariantnoi forme zapisi zakona sokhraneniya massy”, Dalnevost. matem. zhurn., 14:1 (2014), 33–40 | Zbl

[21] A. I. Gudimenko, M. A. Guzev, “Geometricheskie aspekty izucheniya zakona sokhraneniya massy”, Dalnevost. matem. zhurn., 14:2 (2014), 173–190 | Zbl

[22] A. I. Gudimenko, M. A. Guzev, “O kovariantnoi forme zapisi uravneniya Eilera dvizheniya idealnoi zhidkosti”, Dalnevost. matem. zhurn., 15:1 (2015), 41–52 | Zbl

[23] R. Goldblatt, Topoi: The Categorial Analysis of Logic, Elsevier, Amsterdam, New York, 1984 | MR

[24] I. Kolár, P. Michor, J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993 | MR | Zbl

[25] G. Bredon, Sheaf Theory, Springer-Verlag, New York, 1997 | MR | Zbl

[26] B. Glik, Dzh. Pasternak, Molekulyarnaya biotekhnologiya, Mir, M., 2002

[27] V. P. Schipkov, G. N. Krivosheina, Obschaya i meditsinskaya genetika, Akademiya, M., 2003

[28] S. Alberti, “Molecular mechanisms of spatial protein quality control”, Prion, 6:5 (2012), 437–442, Landes Bioscience | DOI

[29] D. V. Stid, Dzh. L. Etvud, Supramolekulyarnaya khimiya, Akademkniga, 2007