Duality method for solving model crack problem
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 137-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the duality method based on the use of modified Lagrangian functional for solving a model of elastic problem with a crack. An article presents the theorems, allowing to use Uzawa method for search a saddle point of the modified Lagrangian functional. The results of numerical experiments are given.
@article{DVMG_2016_16_2_a2,
     author = {E. M. Vikhtenko and R. V. Namm and M. V. Chervyakova},
     title = {Duality method for solving model crack problem},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a2/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - R. V. Namm
AU  - M. V. Chervyakova
TI  - Duality method for solving model crack problem
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2016
SP  - 137
EP  - 146
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a2/
LA  - ru
ID  - DVMG_2016_16_2_a2
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A R. V. Namm
%A M. V. Chervyakova
%T Duality method for solving model crack problem
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2016
%P 137-146
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a2/
%G ru
%F DVMG_2016_16_2_a2
E. M. Vikhtenko; R. V. Namm; M. V. Chervyakova. Duality method for solving model crack problem. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 2, pp. 137-146. http://geodesic.mathdoc.fr/item/DVMG_2016_16_2_a2/

[1] V. L. Berdichevskii, Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M, 1983 | MR

[2] A. S. Kravchuk, Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, MGAPI, M, 1997

[3] G. Dyuvo, Zh. L. Lions, Neravenstva v fizike i mekhanike, Nauka, M, 1980

[4] I. Glavachek, Ya. Gaslinger, I. Nechas, Ya. Lovishek, Reshenie variatsionnykh neravenstv v mekhanike, Mir, M, 1986 | MR

[5] N. Kikuchi, J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Method, SIAM Philadelphia, 1988 | MR

[6] L. A. Galin, Kontaktnye zadachi teorii uprugosti i vyazkouprugosti, Nauka, M, 1980 | MR

[7] N. F. Morozov, Matematicheskie voprosy teorii treschin, Nauka, M, 1984 | MR

[8] A. M. Khludnev, V. A. Kovtunenko, Analysis of cracks in solids, WIT Press, Southampton; Boston, 2000

[9] A. M. Khludnev, Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M, 2010

[10] E. G. Golshtein, N. V. Tretyakov, Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M, 1989

[11] K. Grossman, A. A. Kaplan, Nelineinoe programmirovanie na osnove bezuslovnoi optimizatsii, Nauka. Sib. otd., Novosibirsk, 1981 | MR

[12] D. Bertsekas, Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M, 1987 | MR

[13] E. M. Vikhtenko, R. V. Namm, “O metode dvoistvennosti dlya resheniya modelnoi zadachi s treschinoi”, Trudy instituta matematiki i mekhaniki UrO RAN, 22:1 (2016), 36–43 | MR

[14] E. M. Vikhtenko, G. Woo, R. V. Namm, “Sensitivity functionals in contact problems of elasticity theory”, Comp. Math. and Math. Phys., 54:7 (2014), 1190–1200 | DOI | MR | Zbl