An algorithm for solving the problem of boundary optimal control in a complex heat transfer model
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 24-38

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonstationary model of complex heat transfer, which includes $P_1$ approximation for the radiative heat transfer equation, is considered. The optimal control problem consists in determination of the boundary reflection coefficient within the specified range in order to minimize the cost functional. The considered algorithm for solving the control problem is based on the fact, that the optimal control satisfies the bang-bang principle, and employs the idea of the gradient descent method. The algorithm is tested for a three-dimensional domain.
@article{DVMG_2016_16_1_a2,
     author = {G. V. Grenkin},
     title = {An algorithm for solving the problem of boundary optimal control in a complex heat transfer model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {24--38},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/}
}
TY  - JOUR
AU  - G. V. Grenkin
TI  - An algorithm for solving the problem of boundary optimal control in a complex heat transfer model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2016
SP  - 24
EP  - 38
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/
LA  - ru
ID  - DVMG_2016_16_1_a2
ER  - 
%0 Journal Article
%A G. V. Grenkin
%T An algorithm for solving the problem of boundary optimal control in a complex heat transfer model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2016
%P 24-38
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/
%G ru
%F DVMG_2016_16_1_a2
G. V. Grenkin. An algorithm for solving the problem of boundary optimal control in a complex heat transfer model. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 24-38. http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/