An algorithm for solving the problem of boundary optimal control in a complex heat transfer model
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 24-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonstationary model of complex heat transfer, which includes $P_1$ approximation for the radiative heat transfer equation, is considered. The optimal control problem consists in determination of the boundary reflection coefficient within the specified range in order to minimize the cost functional. The considered algorithm for solving the control problem is based on the fact, that the optimal control satisfies the bang-bang principle, and employs the idea of the gradient descent method. The algorithm is tested for a three-dimensional domain.
@article{DVMG_2016_16_1_a2,
     author = {G. V. Grenkin},
     title = {An algorithm for solving the problem of boundary optimal control in a complex heat transfer model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {24--38},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/}
}
TY  - JOUR
AU  - G. V. Grenkin
TI  - An algorithm for solving the problem of boundary optimal control in a complex heat transfer model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2016
SP  - 24
EP  - 38
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/
LA  - ru
ID  - DVMG_2016_16_1_a2
ER  - 
%0 Journal Article
%A G. V. Grenkin
%T An algorithm for solving the problem of boundary optimal control in a complex heat transfer model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2016
%P 24-38
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/
%G ru
%F DVMG_2016_16_1_a2
G. V. Grenkin. An algorithm for solving the problem of boundary optimal control in a complex heat transfer model. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 24-38. http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/

[1] D. Clever, J. Lang, D. Schröder, “Model hierarchy-based optimal control of radiative heat transfer”, Int. J. Comput. Sci. Eng., 9:5–6 (2014), 509–525 | DOI

[2] A. Farina, A. Klar, R. M. M. Mattheij, A. Mikelić, N. Siedow, Mathematical models in the manufacturing of glass, Lecture Notes in Mathematics, Springer, 2011 | DOI | MR

[3] G. Thömmes, R. Pinnau, M. Seaïd, T. Götz, A. Klar, “Numerical methods and optimal control for glass cooling processes”, Transport Theory Statist. Phys., 31:4–6 (2002), 513–529 | DOI | MR | Zbl

[4] R. Pinnau, G. Thömmes, “Optimal boundary control of glass cooling processes”, Math. Methods Appl. Sci., 27:11 (2004), 1261–1281 | DOI | MR | Zbl

[5] R. Pinnau, “Analysis of optimal boundary control for radiative heat transfer modeled by the SP$_1$-system”, Commun. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl

[6] R. Pinnau, A. Schulze, “Newton's method for optimal temperature-tracking of glass cooling processes”, Inverse Probl. Sci. Eng., 15:4 (2007), 303–323 | DOI | MR | Zbl

[7] M. Frank, A. Klar, R. Pinnau, “Optimal control of glass cooling using simplified $\mathrm{P_N}$ theory”, Transport Theory Statist. Phys., 39:2–4 (2010), 282–311 | DOI | MR | Zbl

[8] D. Clever, J. Lang, “Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient”, Optimal Control Appl. Methods, 33:2 (2012), 157–175 | DOI | MR | Zbl

[9] O. Tse, R. Pinnau, “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 11:3 (2013), 679–707 | DOI | MR | Zbl

[10] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439:2 (2016), 678–689 | DOI | MR | Zbl

[11] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412:1 (2014), 520–528 | DOI | MR | Zbl

[12] G. V. Grenkin, “Optimalnoe upravlenie v nestatsionarnoi zadache slozhnogo teploobmena”, Dalnevost. matem. zhurn., 14:2 (2014), 160–172 | Zbl

[13] G. V. Grenkin, A. Yu. Chebotarev, A. E. Kovtanyuk, N. D. Botkin, K.-H. Hoffmann, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433:2 (2016), 1243–1260 | DOI | MR | Zbl

[14] A. Münch, F. Periago, “Numerical approximation of bang-bang controls for the heat equation: An optimal design approach”, Systems Control Lett., 62:8 (2013), 643–655 | DOI | MR | Zbl

[15] K. Glashoff, E. Sachs, “On theoretical and numerical aspects of the bang-bang-principle”, Numer. Math., 29:1 (1977), 93–113 | DOI | MR | Zbl

[16] K. Deckelnick, M. Hinze, “A note on the approximation of elliptic control problems with bang-bang controls”, Comput. Optim. Appl., 51:2 (2012), 931–939 | DOI | MR | Zbl

[17] C. Y. Kaya, S. K. Lucas, S. T. Simakov, “Computations for bang-bang constrained optimal control using a mathematical programming formulation”, Optimal Control Appl. Methods, 25:6 (2004), 295–308 | DOI | MR | Zbl

[18] T. Taleshian, A. Ranjbar Noei, R. Ghaderi, “IPSO-SQP algorithm for solving time optimal bang-bang control problems and its application on autonomous underwater vehicle”, Journal of Advances in Computer Research, 5:2 (2014), 69–88 | MR

[19] H. Maurer, H. D. Mittelmann, “Optimization techniques for solving elliptic control problems with control and state constraints: Part 1. Boundary control”, Comput. Optim. Appl., 16:1 (2000), 29–55 | DOI | MR | Zbl

[20] H. Maurer, H. D. Mittelmann, “Optimization techniques for solving elliptic control problems with control and state constraints: Part 2. Distributed control”, Comput. Optim. Appl., 18:2 (2001), 141–160 | DOI | MR | Zbl

[21] A. Borzì, K. Kunisch, “A multigrid scheme for elliptic constrained optimal control problems”, Comput. Optim. Appl., 31:3 (2005), 309–333 | DOI | MR | Zbl

[22] M. J. Zandvliet, O. H. Bosgra, J. D. Jansen, P. M. J. Van den Hof, J. F. B. M. Kraaijevanger, “Bang-bang control and singular arcs in reservoir flooding”, J. Pet. Sci. Eng., 58:1–2 (2007), 186–200 | DOI

[23] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR

[24] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, 2nd Edition, SIAM Press, Philadelphia, 1994 | MR

[25] The Iterative Template Library } {\tt http://www.osl.iu.edu/research/itl/

[26] G. V. Grenkin, A. Yu. Chebotarev, “Optimalnoe upravlenie granichnym koeffitsientom v polustatsionarnoi modeli slozhnogo teploobmena v trekhmernoi oblasti”, Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM 2016611950, 15.02.2016, Zaregistrirovano v Reestre programm dlya EVM