Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2016_16_1_a2, author = {G. V. Grenkin}, title = {An algorithm for solving the problem of boundary optimal control in a complex heat transfer model}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {24--38}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/} }
TY - JOUR AU - G. V. Grenkin TI - An algorithm for solving the problem of boundary optimal control in a complex heat transfer model JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2016 SP - 24 EP - 38 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/ LA - ru ID - DVMG_2016_16_1_a2 ER -
G. V. Grenkin. An algorithm for solving the problem of boundary optimal control in a complex heat transfer model. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 24-38. http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a2/
[1] D. Clever, J. Lang, D. Schröder, “Model hierarchy-based optimal control of radiative heat transfer”, Int. J. Comput. Sci. Eng., 9:5–6 (2014), 509–525 | DOI
[2] A. Farina, A. Klar, R. M. M. Mattheij, A. Mikelić, N. Siedow, Mathematical models in the manufacturing of glass, Lecture Notes in Mathematics, Springer, 2011 | DOI | MR
[3] G. Thömmes, R. Pinnau, M. Seaïd, T. Götz, A. Klar, “Numerical methods and optimal control for glass cooling processes”, Transport Theory Statist. Phys., 31:4–6 (2002), 513–529 | DOI | MR | Zbl
[4] R. Pinnau, G. Thömmes, “Optimal boundary control of glass cooling processes”, Math. Methods Appl. Sci., 27:11 (2004), 1261–1281 | DOI | MR | Zbl
[5] R. Pinnau, “Analysis of optimal boundary control for radiative heat transfer modeled by the SP$_1$-system”, Commun. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl
[6] R. Pinnau, A. Schulze, “Newton's method for optimal temperature-tracking of glass cooling processes”, Inverse Probl. Sci. Eng., 15:4 (2007), 303–323 | DOI | MR | Zbl
[7] M. Frank, A. Klar, R. Pinnau, “Optimal control of glass cooling using simplified $\mathrm{P_N}$ theory”, Transport Theory Statist. Phys., 39:2–4 (2010), 282–311 | DOI | MR | Zbl
[8] D. Clever, J. Lang, “Optimal control of radiative heat transfer in glass cooling with restrictions on the temperature gradient”, Optimal Control Appl. Methods, 33:2 (2012), 157–175 | DOI | MR | Zbl
[9] O. Tse, R. Pinnau, “Optimal control of a simplified natural convection-radiation model”, Commun. Math. Sci., 11:3 (2013), 679–707 | DOI | MR | Zbl
[10] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Optimal boundary control of a steady-state heat transfer model accounting for radiative effects”, J. Math. Anal. Appl., 439:2 (2016), 678–689 | DOI | MR | Zbl
[11] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412:1 (2014), 520–528 | DOI | MR | Zbl
[12] G. V. Grenkin, “Optimalnoe upravlenie v nestatsionarnoi zadache slozhnogo teploobmena”, Dalnevost. matem. zhurn., 14:2 (2014), 160–172 | Zbl
[13] G. V. Grenkin, A. Yu. Chebotarev, A. E. Kovtanyuk, N. D. Botkin, K.-H. Hoffmann, “Boundary optimal control problem of complex heat transfer model”, J. Math. Anal. Appl., 433:2 (2016), 1243–1260 | DOI | MR | Zbl
[14] A. Münch, F. Periago, “Numerical approximation of bang-bang controls for the heat equation: An optimal design approach”, Systems Control Lett., 62:8 (2013), 643–655 | DOI | MR | Zbl
[15] K. Glashoff, E. Sachs, “On theoretical and numerical aspects of the bang-bang-principle”, Numer. Math., 29:1 (1977), 93–113 | DOI | MR | Zbl
[16] K. Deckelnick, M. Hinze, “A note on the approximation of elliptic control problems with bang-bang controls”, Comput. Optim. Appl., 51:2 (2012), 931–939 | DOI | MR | Zbl
[17] C. Y. Kaya, S. K. Lucas, S. T. Simakov, “Computations for bang-bang constrained optimal control using a mathematical programming formulation”, Optimal Control Appl. Methods, 25:6 (2004), 295–308 | DOI | MR | Zbl
[18] T. Taleshian, A. Ranjbar Noei, R. Ghaderi, “IPSO-SQP algorithm for solving time optimal bang-bang control problems and its application on autonomous underwater vehicle”, Journal of Advances in Computer Research, 5:2 (2014), 69–88 | MR
[19] H. Maurer, H. D. Mittelmann, “Optimization techniques for solving elliptic control problems with control and state constraints: Part 1. Boundary control”, Comput. Optim. Appl., 16:1 (2000), 29–55 | DOI | MR | Zbl
[20] H. Maurer, H. D. Mittelmann, “Optimization techniques for solving elliptic control problems with control and state constraints: Part 2. Distributed control”, Comput. Optim. Appl., 18:2 (2001), 141–160 | DOI | MR | Zbl
[21] A. Borzì, K. Kunisch, “A multigrid scheme for elliptic constrained optimal control problems”, Comput. Optim. Appl., 31:3 (2005), 309–333 | DOI | MR | Zbl
[22] M. J. Zandvliet, O. H. Bosgra, J. D. Jansen, P. M. J. Van den Hof, J. F. B. M. Kraaijevanger, “Bang-bang control and singular arcs in reservoir flooding”, J. Pet. Sci. Eng., 58:1–2 (2007), 186–200 | DOI
[23] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR
[24] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, 2nd Edition, SIAM Press, Philadelphia, 1994 | MR
[25] The Iterative Template Library } {\tt http://www.osl.iu.edu/research/itl/
[26] G. V. Grenkin, A. Yu. Chebotarev, “Optimalnoe upravlenie granichnym koeffitsientom v polustatsionarnoi modeli slozhnogo teploobmena v trekhmernoi oblasti”, Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM 2016611950, 15.02.2016, Zaregistrirovano v Reestre programm dlya EVM