Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2016_16_1_a0, author = {V. A. Bykovskii}, title = {The {Eisenstein-Hecke} series and their properties}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {3--8}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a0/} }
V. A. Bykovskii. The Eisenstein-Hecke series and their properties. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a0/
[1] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, NJ, 1971 ; Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, Mir, M. | MR | Zbl
[2] J.-M. Deshouillers, H. Ivaniec, “Kloosterman sums and Fourier coofficients of cups forms”, Invent. Math., 70 (1988), 219–288 | DOI | MR
[3] V. A. Bykovskii, N. V. Kuznetsov, A. I. Vinogradov, “Generalized summation formula for inhomogeneous convolution”, In Proc. Int. Conf. Automorphic functions and their applications, Khabarovsk, 1989, 18–63 | MR
[4] M. N. Huxley, “Scattering matrices for congruence subgroups”, Modular Forms, ed. by R. Rankin, 1984, 141–156 | MR | Zbl
[5] S. Gelbart, H. Jacquet, “Forms on GL(2) from the analytic point of viev”, Proc. Symp. Pure Math., v. 33, part 1, RI, Providence, 1979, 213–251 | DOI | MR | Zbl