The Eisenstein-Hecke series and their properties
Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma_0(N)$ be the congruence subgroup of level N. If N is not a square-free number then the Fourier coefficients of the classical Eisenstein series are not multiplicative. In the paper we construct the modified Eisenstein-Hecke series with the desired property of multiplicativity. This result is of great importance for investigating trace formulas on the space of cusp forms. Similar results were obtained earlier by S. Gelbart and H. Jacquet using the theory of adeles.
@article{DVMG_2016_16_1_a0,
     author = {V. A. Bykovskii},
     title = {The {Eisenstein-Hecke} series and their properties},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a0/}
}
TY  - JOUR
AU  - V. A. Bykovskii
TI  - The Eisenstein-Hecke series and their properties
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2016
SP  - 3
EP  - 8
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a0/
LA  - ru
ID  - DVMG_2016_16_1_a0
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%T The Eisenstein-Hecke series and their properties
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2016
%P 3-8
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a0/
%G ru
%F DVMG_2016_16_1_a0
V. A. Bykovskii. The Eisenstein-Hecke series and their properties. Dalʹnevostočnyj matematičeskij žurnal, Tome 16 (2016) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/DVMG_2016_16_1_a0/

[1] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton Univ. Press, Princeton, NJ, 1971 ; Vvedenie v arifmeticheskuyu teoriyu avtomorfnykh funktsii, Mir, M. | MR | Zbl

[2] J.-M. Deshouillers, H. Ivaniec, “Kloosterman sums and Fourier coofficients of cups forms”, Invent. Math., 70 (1988), 219–288 | DOI | MR

[3] V. A. Bykovskii, N. V. Kuznetsov, A. I. Vinogradov, “Generalized summation formula for inhomogeneous convolution”, In Proc. Int. Conf. Automorphic functions and their applications, Khabarovsk, 1989, 18–63 | MR

[4] M. N. Huxley, “Scattering matrices for congruence subgroups”, Modular Forms, ed. by R. Rankin, 1984, 141–156 | MR | Zbl

[5] S. Gelbart, H. Jacquet, “Forms on GL(2) from the analytic point of viev”, Proc. Symp. Pure Math., v. 33, part 1, RI, Providence, 1979, 213–251 | DOI | MR | Zbl