Shrinkage of the hollow cylinder during heating
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 264-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

Shrinkage of the outer surface of a hollow cylinder of a material with a positive coefficient of linear thermal expansion on heating can't be realized in the model of Duhamel – Neumann's thermoelasticity with constant elastic moduli. But it turns out that if elastic moduli are temperature dependent with uneven heating negative radial displacement of the outer cylindrical surface is possible. In this paper the exact analytical integration of the differential equations of thermoelastic equilibrium (Lame) for the long hollow cylinder, which is in under plane strain conditions, under certain restrictions on the coefficients and the right part, are carried out. Conditions for shrinkage on heating of cylinder and physically realizable example of such cylinder are given.
@article{DVMG_2015_15_2_a9,
     author = {G. M. Sevastyanov},
     title = {Shrinkage of the hollow cylinder during heating},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {264--276},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a9/}
}
TY  - JOUR
AU  - G. M. Sevastyanov
TI  - Shrinkage of the hollow cylinder during heating
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 264
EP  - 276
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a9/
LA  - ru
ID  - DVMG_2015_15_2_a9
ER  - 
%0 Journal Article
%A G. M. Sevastyanov
%T Shrinkage of the hollow cylinder during heating
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 264-276
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a9/
%G ru
%F DVMG_2015_15_2_a9
G. M. Sevastyanov. Shrinkage of the hollow cylinder during heating. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 264-276. http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a9/

[1] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, FIZMATGIZ, M., 1961

[2] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1965

[3] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972

[4] A. A. Andreev, A. A. Kilbas, “O nekotorykh assotsiirovannykh gipergeometricheskikh funktsiyakh”, Izvestiya VUZov. Matematika, 271:12 (1984), 3–12 | MR | Zbl

[5] A. D. Kovalenko, Osnovy termouprugosti, Naukova dumka, Kiev, 1970

[6] V. A. Kudinov, A. V. Erëmin, E. V. Kotova, “Poluchenie tochnykh analiticheskikh reshenii zadach termouprugosti dlya mnogosloinykh tsilindricheskikh konstruktsii”, Vestnik SamGTU. Seriya “Fiziko-matematicheskie nauki”, 27:2 (2012), 188–191 | DOI

[7] B. S. Lunin, S. N. Torbin, “O temperaturnoi zavisimosti modulya Yunga chistykh kvartsevykh stekol”, Vestnik Moskovskogo universiteta. Seriya 2. Khimiya, 41:3 (2000), 172–173

[8] O. N. Lyubimova, E. A. Gridasova, K. N. Pestov, “K voprosu uprochneniya stekla metodom diffuzionnoi svarki s metallom”, Vestnik ChGPU im. I. Ya. Yakovleva. Seriya Mekhanika predelnogo sostoyaniya, 8:2 (2010), 318–325

[9] L. B. Potapova, V. P. Yartsev, Mekhanika materialov pri slozhnom napryazhennom sostoyanii. Kak prognoziruyut predelnye napryazheniya?, Izdatelstvo Mashinostroenie-1, M., 2005

[10] V. F. Zaitsev, A. D. Polyanin, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1995 | MR

[11] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, FIZMATGIZ, M., 1963

[12] R. S. Maier, “The 192 solutions of the Heun equation”, Mathematics of Computation, 76:258 (2007), 811–843 | DOI | MR | Zbl

[13] G. N. Greaves, A. L. Greer, R. S. Lakes, T. Rouxel, “Poisson's ratio and modern materials”, Nature Materials, 986:10 (2011), 823–837 | DOI