$k$-belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 197-213

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of $k$-belts on simple $3$-polytopes with at most hexagonal facets. As a corollary we prove that the number of patches that can be bounded by a simple edge-cycle of given length on such polytopes different from nanotubes, is finite.
@article{DVMG_2015_15_2_a4,
     author = {N. Yu. Erokhovets},
     title = {$k$-belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {197--213},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a4/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - $k$-belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 197
EP  - 213
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a4/
LA  - ru
ID  - DVMG_2015_15_2_a4
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T $k$-belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 197-213
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a4/
%G ru
%F DVMG_2015_15_2_a4
N. Yu. Erokhovets. $k$-belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 197-213. http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a4/