$k$-belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 197-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of $k$-belts on simple $3$-polytopes with at most hexagonal facets. As a corollary we prove that the number of patches that can be bounded by a simple edge-cycle of given length on such polytopes different from nanotubes, is finite.
@article{DVMG_2015_15_2_a4,
     author = {N. Yu. Erokhovets},
     title = {$k$-belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {197--213},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a4/}
}
TY  - JOUR
AU  - N. Yu. Erokhovets
TI  - $k$-belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 197
EP  - 213
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a4/
LA  - ru
ID  - DVMG_2015_15_2_a4
ER  - 
%0 Journal Article
%A N. Yu. Erokhovets
%T $k$-belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 197-213
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a4/
%G ru
%F DVMG_2015_15_2_a4
N. Yu. Erokhovets. $k$-belts and edge-cycles of three-dimensional simple polytopes with at most hexagonal facets. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 197-213. http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a4/

[1] T. Došlić, “Cyclical edge-connectivity of fullerene graphs and $(k,6)$-cages”, Journal of Mathematical Chemistry, 33:2 (2003), 103–-112 | DOI | MR

[2] A. R. Ashrafi, Z. Mehranian, “Topological Study of $(3,6)$- and $(4,6)$-Fullerenes”, Topological Modelling of Nanostructures and Extended Systems, Series Carbon Materials: Chemistry and Physics, 7, 2013, 487–510 | DOI

[3] G. Brinkman, A. W. Dress, “A constructive enumaretation of fullerens”, J. Algorithms, 23:2 (1997), 345–358 | DOI | MR

[4] G. Brinkmann, J. Goedgebeur and B. D. McKay, “The Generation of Fullerenes”, Journal of Chemical Information and Modeling, 52:11 (2012), 2910–2918 | DOI

[5] M. Endo, H. W. Kroto, “Formation of carbon nanofibers”, J. Phys. Chem., 96 (1992), 6941–6944 | DOI

[6] G. Brinkmann, G. Caporossi and P. Hansen, “A survey and new results on computer enumeration of polyhex and fusene hydrocarbons”, J. Chem. Inf. Comput. Sci., 43 (2003), 842-–851 | DOI

[7] G. Brinkmann, O. Delgado Friedrichs and U. von Nathusius, “Numbers of faces and boundary encodings of patches”, Graphs and discovery, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 69, AMS, Providence, RI, 2005, 27–38 | MR | Zbl

[8] G. Brinkmann, J. E. Graver and C. Justus, “Numbers of Faces in Disordered Patches”, J. Math. Chem., 45 (2009), 263–278 | DOI | MR | Zbl

[9] J. Bornhöft, G. Brinkmann, J. Greinus, “Pentagon-hexagon-patches with short boundaries”, European Journal of Combinatorics, 24 (2003), 517-–529 | DOI | MR | Zbl

[10] M. Hasheminezhad, H. Fleischner, B. D. McKay, “A universal set of growth operations for fullerenes”, Chemical Physics Letters, 464 (2008), 118–121 | DOI

[11] V. M. Buchstaber, N. Yu. Erokhovets, Construction of fullerenes, 2015, arXiv: 1510.02948v1[math.CO]

[12] J. E. Graver, C. M. Graves, “Fullerene patches I”, Ars Mathematica Contemporanea, 3 (2010), 109–120 | MR | Zbl

[13] J. E. Graver, C. M. Graves, S. J. Graves, “Fullerene patches II”, Ars Mathematica Contemporanea, 7 (2004), 405–421 | MR

[14] T. Došlić, “On lower bounds of number of perfect matchings in fullerene graphs”, Journal of Mathematical Chemistry, 24 (2008), 359–364 | MR

[15] K. Kutnar, D. Marušič, “On cyclic edge-connectivity of fullerenes”, Discr. Appl. Math., 156 (2008), 1661–1669 | DOI | MR | Zbl

[16] F. Kardoš, R. Skrekovski, “Cyclic edge-cuts in fullerene graphs”, J. Math. Chem, 22 (2008), 121–132 | DOI | MR

[17] F. Kardoš M. Krnc, B. Lužar, R. Skrekovski, “Cyclic $7$-edge-cuts in fullerene graphs”, Journal of Mathematical Chemistry, 47:2 (2010), 771–789, Springer Verlag (Germany) | DOI | MR

[18] M. Deza, M. Dyutur Sikirich, M. I. Shtogrin, “Fullereny i disk-fullereny”, UMN, 68:4(412) (2013), 69–-128 | DOI | MR | Zbl

[19] P. Schwerdtfeger, L. N. Wirz and J. Avery, “The topology of fullerenes”, WIREs Comput Mol Sci, 2015 | DOI

[20] E. E. Lord, A. L. Makkei, S. Ranganatan, Novaya geometriya dlya novykh materialov, Fizmatlit, M, 2010

[21] B. Grünbaum, Convex polytopes, Graduate texts in Mathematics, 221, Springer-Verlag, New York, 2003 | DOI | MR

[22] G. M. Tsigler, Teoriya mnogogrannikov, MTsNMO, M, 2014

[23] V. M. Bukhshtaber, N. Yu. Erokhovets, “Usecheniya prostykh mnogogrannikov i prilozheniya”, Trudy MIAN im. V.A. Steklova, 289 (2015), 115–144 | DOI