Cluster sets of a convergent sequence of continuous mappings
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 192-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the full cluster set of the pointwise convergent sequence of continuous mappings from complete metric space $X$ to a metric space $Y$ is degenerate on a residual set of points of $X$.
@article{DVMG_2015_15_2_a3,
     author = {A. P. Devyatkov},
     title = {Cluster sets of a convergent sequence of continuous mappings},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {192--196},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a3/}
}
TY  - JOUR
AU  - A. P. Devyatkov
TI  - Cluster sets of a convergent sequence of continuous mappings
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 192
EP  - 196
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a3/
LA  - ru
ID  - DVMG_2015_15_2_a3
ER  - 
%0 Journal Article
%A A. P. Devyatkov
%T Cluster sets of a convergent sequence of continuous mappings
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 192-196
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a3/
%G ru
%F DVMG_2015_15_2_a3
A. P. Devyatkov. Cluster sets of a convergent sequence of continuous mappings. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 192-196. http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a3/

[1] V. I. Kruglikov, “Predelnye mnozhestva posledovatelnosti funktsii”, Dokl. RAN, 357:1 (1997), 16–18 | MR | Zbl

[2] K. Nosiro, Predelnye mnozhestva, IL, M., 1963

[3] E. Kollingvud, A. Lovater, Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR

[4] A. Lovater, “Granichnoe povedenie analiticheskikh funktsii”, v. 10, Itogi nauki i tekhniki. Matematicheskii analiz, VINITI, 1973, 99–259 | MR

[5] S. Stoilow, “Asupra convergentei continue”, Studii şi Cercetări Mat., 7 (1956), 247–250 | MR | Zbl