On the uniform bounds on hypergeometric function
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 289-298.

Voir la notice de l'article provenant de la source Math-Net.Ru

A uniform asymptotic formula for hypergeometric function is obtained.
@article{DVMG_2015_15_2_a11,
     author = {D. A. Frolenkov},
     title = {On the uniform bounds on hypergeometric function},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {289--298},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a11/}
}
TY  - JOUR
AU  - D. A. Frolenkov
TI  - On the uniform bounds on hypergeometric function
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 289
EP  - 298
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a11/
LA  - ru
ID  - DVMG_2015_15_2_a11
ER  - 
%0 Journal Article
%A D. A. Frolenkov
%T On the uniform bounds on hypergeometric function
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 289-298
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a11/
%G ru
%F DVMG_2015_15_2_a11
D. A. Frolenkov. On the uniform bounds on hypergeometric function. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 289-298. http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a11/

[1] Balkanova O. G., Frolenkov D. A., A uniform asymptotic formula for the second moment of primitive $L$-functions of prime power level, preprint

[2] Bykovskii V. A., Frolenkov D. A., “O vtorom momente L-ryadov golomorfnykh parabolicheskikh form na kriticheskoi pryamoi”, DAN. Matematika, 463:2 (2015), 133–136 | Zbl

[3] Motohashi Y., “The binary additive divisor problem”, Ann. Sci. Ecole Norm. Sup., 27 (1994), 529–572 | MR | Zbl

[4] Ivic A., Motohashi Y., “The moments of the Riemann zeta-function Part I: The fourth moment off the critical line”, Functiones et Approximatio, 35 (2006), 133–181 | DOI | MR | Zbl

[5] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W., NIST Handbook of Mathematical Functions, Nat. Inst. of Stand. and Tech. and Cam. Univ.Press, Cambridge, 2010 | MR