On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 133-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that for any sufficiently large $Q\in{\mathbb N}$ there exist cylinders $K\subset{\mathbb Q}_p$ with Haar measure $\mu(K)\le \frac{1}{2}Q^{-1}$ which do not contain algebraic $p$-adic numbers $\alpha$ of degree $\deg\alpha=n$ and height $H(\alpha)\le Q$. The main result establishes in any cylinder $K$, $\mu(K)>c_1Q^{-1}$, $c_1>c_0(n)$, the existence of at least $c_{3}Q^{n+1}\mu(K)$ algebraic $p$-adic numbers $\alpha\in K$ of degree $n$ and $H(\alpha)\le Q$.
@article{DVMG_2015_15_2_a0,
     author = {N. V. Budarina and F. G\"otze},
     title = {On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {133--155},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a0/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - F. Götze
TI  - On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 133
EP  - 155
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a0/
LA  - en
ID  - DVMG_2015_15_2_a0
ER  - 
%0 Journal Article
%A N. V. Budarina
%A F. Götze
%T On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 133-155
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a0/
%G en
%F DVMG_2015_15_2_a0
N. V. Budarina; F. Götze. On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 133-155. http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a0/

[1] A. Baker, W.M. Schmidt, “Diophantine approximation and Hausdorff dimension”, Proc. London Math. Soc., 21 (1970), 1–11 | DOI | MR | Zbl

[2] V. V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:2 (1999), 97–112 | MR | Zbl

[3] V.V. Beresnevich, V.I. Bernik, D.Y. Kleinbock, G.A. Margulis, “Metric Diophantine approximation: the Khintchine–Groshev theorem for nondegenerate manifolds”, Mosc. Math. J., 2:2 (2002), 203–225 | MR | Zbl

[4] V. Bernik, N. Budarina, D. Dickinson, “A divergent Khintchine theorem in the real, complex, and $p$-adic fields”, Lith. Math. J., 48:2 (2008), 158–173 | DOI | MR | Zbl

[5] V.V Beresnevich, V.I. Bernik and E.I. Kovalevskaya, “On approximation of $p$-adic numbers by $p$-adic algebraic numbers”, J. Number Theory., 111:1 (2005), 33–56 | DOI | MR | Zbl

[6] A. Baker, “Dirichlet theorem on Diophantine approximation”, Math. Proc. Cam. Phil. Soc., 83:1 (1978), 37–59 | DOI | MR | Zbl

[7] V.I. Bernik, I.L. Morotskaya, “Diophantine approximation in ${\mathbb Q}_p$ and Hausdorff dimension”, Vestsi Akad. Navuk BSSR Ser. Fiz-Mat nauk., 3 (1986), 3–9, 123 | MR | Zbl

[8] I.R. Dombrovsky, “Simultaneous approximation of real numbers by algebraic numbers of bounded degree”, Dokl. Akad. Nauk BSSR, 3 (1989), 205–208 | MR

[9] Y.V. Melnichuk, “Diophantine approximation on curves and Hausdorff dimension”, Mat. Zametki, 26 (1979), 347–354 | MR | Zbl

[10] D.V. Vasilyev, “Diophantine sets in $\mathbb{C}$ and Hausdorff dimension”, Inst. Math., Belarus. Acad. Sc., 1997, 21–28

[11] Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, Cambridge, 2004. | MR | Zbl

[12] V.\;V. Beresnevich, “Effective estimates for measures of sets of real numbers with a given order of approximation by quadratic irrationalities”, Vestsi Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk., 4 (1996), 10–15 | MR | Zbl

[13] V. Bernik, F. Götze, O. Kukso, “Regular systems of real algebraic numbers of third degree in small intervals”, Anal. Probab. Methods Number Theory, ed. A. Laurinchikas et., 2012, 61–68 | MR | Zbl

[14] V. Bernik, F. Götze, “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izv. Math., 79:1 (2015), 18–39 | DOI | MR | Zbl

[15] V. Sprindžuk, Mahler's problem in the metric theory of numbers, 25, Amer. Math. Soc., Providence, RI, 1969 | MR

[16] V.I. Bernik, N. Kalosha, “Approximation of zero by values of integral polynomials in space ${\mathbb R}\times{\mathbb C}\times {\mathbb Q}_p$”, Vesti NAN of Belarus. Ser. fiz-mat nauk., 1 (2004), 121–123 | MR

[17] V.I. Bernik, M.M. Dodson, Metric Diophantine approximation on manifolds, Cambridge Tracts in Mathematics, 137, Cambridge University Press, Cambridge, 1999 | MR | Zbl