On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 133-155

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that for any sufficiently large $Q\in{\mathbb N}$ there exist cylinders $K\subset{\mathbb Q}_p$ with Haar measure $\mu(K)\le \frac{1}{2}Q^{-1}$ which do not contain algebraic $p$-adic numbers $\alpha$ of degree $\deg\alpha=n$ and height $H(\alpha)\le Q$. The main result establishes in any cylinder $K$, $\mu(K)>c_1Q^{-1}$, $c_1>c_0(n)$, the existence of at least $c_{3}Q^{n+1}\mu(K)$ algebraic $p$-adic numbers $\alpha\in K$ of degree $n$ and $H(\alpha)\le Q$.
@article{DVMG_2015_15_2_a0,
     author = {N. V. Budarina and F. G\"otze},
     title = {On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {133--155},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a0/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - F. Götze
TI  - On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 133
EP  - 155
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a0/
LA  - en
ID  - DVMG_2015_15_2_a0
ER  - 
%0 Journal Article
%A N. V. Budarina
%A F. Götze
%T On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 133-155
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a0/
%G en
%F DVMG_2015_15_2_a0
N. V. Budarina; F. Götze. On regular systems of algebraic $p$-adic numbers of arbitrary degree in small cylinders. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 2, pp. 133-155. http://geodesic.mathdoc.fr/item/DVMG_2015_15_2_a0/