Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2015_15_1_a8, author = {Q. Feng and Hu Zhishui}, title = {Asymptotic normality of the {Zagreb} index of random $b$-ary recursive trees}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {91--101}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a8/} }
TY - JOUR AU - Q. Feng AU - Hu Zhishui TI - Asymptotic normality of the Zagreb index of random $b$-ary recursive trees JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2015 SP - 91 EP - 101 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a8/ LA - ru ID - DVMG_2015_15_1_a8 ER -
Q. Feng; Hu Zhishui. Asymptotic normality of the Zagreb index of random $b$-ary recursive trees. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 91-101. http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a8/
[1] V. Andova, S. Bogoev, D. Dimitrov, M. Pilipczuk and R. Škrekovski, “On the Zagreb index inequality of graphs with prescribed vertex degrees”, Discrete Applied Mathematics, 159 (2011), 852–858 | DOI | MR | Zbl
[2] F. Bergeron, P. Flajolet and B. Salvy, “Varieties of increasing trees”, Proc. 17th Coll. Trees in Algebra and Programming (Lecture Notes Comput. Sci.), v. 581, ed. Raoult, J.C., Springer, Berlin, 1992, 24–48 | MR
[3] N. Broutin, L. Devroye, E. McLeish and M. de la Salle, “The height of increasing trees”, Random Structures and Algorithms, 32 (2008), 494–518 | DOI | MR | Zbl
[4] Q. Feng and Z. Hu, “On the Zagreb index of random recursive trees”, Journal of Applied Probability, 48 (2011), 1189–1196 | DOI | MR | Zbl
[5] I. Gutman and N. Trinajstić, “Graph theory and molecular orbitals. Total $\varphi$-electron energy of alternant hydrocarbons”, Chemical Physics Letters, 17 (1972), 535–538 | DOI
[6] P. Hall and C. C. Heyde, Martingale limit theory and its application, Academic Press, New York, 1980 | MR | Zbl
[7] S. Janson, “Random cutting and records in deterministic and random trees”, Random Structures and Algorithms, 29 (2006), 139–179 | DOI | MR | Zbl
[8] D. Knuth, The Art of Computer Programming, v. 3, Sorting and Searchingn, 2nd, Addison-Wesley, Reading, Massachusetts, 1998 | MR
[9] M. Kuba and A. Panholzer, “On the degree distribution of the nodes in increasing trees”, Journal of Combinatorial Theory, Series A, 114 (2007), 597–618 | DOI | MR | Zbl
[10] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, “The Zagreb indices 30 years after”, Croatica Chemica ACTA, 76 (2003), 113–124
[11] A. Panholzer and H. Prodinger, “The level of nodes in increasing trees revisited”, Random Structures and Algorithms, 31 (2007), 203–226 | DOI | MR | Zbl