Asymptotic normality of the Zagreb index of random $b$-ary recursive trees
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 91-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $b$-ary recursive trees model is one of simple families of increasing trees. In this work, the Zagreb index $Z_n$ of a random $b$-ary recursive tree of size $n$ is studied. As $n\to\infty$, the asymptotic normality of $Z_n$ is established through the martingale central limit theorem, as well as the asymptotic expressions of the mean and variance of $Z_n$ are given.
@article{DVMG_2015_15_1_a8,
     author = {Q. Feng and Hu Zhishui},
     title = {Asymptotic normality of the {Zagreb} index of random $b$-ary recursive trees},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {91--101},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a8/}
}
TY  - JOUR
AU  - Q. Feng
AU  - Hu Zhishui
TI  - Asymptotic normality of the Zagreb index of random $b$-ary recursive trees
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 91
EP  - 101
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a8/
LA  - ru
ID  - DVMG_2015_15_1_a8
ER  - 
%0 Journal Article
%A Q. Feng
%A Hu Zhishui
%T Asymptotic normality of the Zagreb index of random $b$-ary recursive trees
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 91-101
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a8/
%G ru
%F DVMG_2015_15_1_a8
Q. Feng; Hu Zhishui. Asymptotic normality of the Zagreb index of random $b$-ary recursive trees. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 91-101. http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a8/

[1] V. Andova, S. Bogoev, D. Dimitrov, M. Pilipczuk and R. Škrekovski, “On the Zagreb index inequality of graphs with prescribed vertex degrees”, Discrete Applied Mathematics, 159 (2011), 852–858 | DOI | MR | Zbl

[2] F. Bergeron, P. Flajolet and B. Salvy, “Varieties of increasing trees”, Proc. 17th Coll. Trees in Algebra and Programming (Lecture Notes Comput. Sci.), v. 581, ed. Raoult, J.C., Springer, Berlin, 1992, 24–48 | MR

[3] N. Broutin, L. Devroye, E. McLeish and M. de la Salle, “The height of increasing trees”, Random Structures and Algorithms, 32 (2008), 494–518 | DOI | MR | Zbl

[4] Q. Feng and Z. Hu, “On the Zagreb index of random recursive trees”, Journal of Applied Probability, 48 (2011), 1189–1196 | DOI | MR | Zbl

[5] I. Gutman and N. Trinajstić, “Graph theory and molecular orbitals. Total $\varphi$-electron energy of alternant hydrocarbons”, Chemical Physics Letters, 17 (1972), 535–538 | DOI

[6] P. Hall and C. C. Heyde, Martingale limit theory and its application, Academic Press, New York, 1980 | MR | Zbl

[7] S. Janson, “Random cutting and records in deterministic and random trees”, Random Structures and Algorithms, 29 (2006), 139–179 | DOI | MR | Zbl

[8] D. Knuth, The Art of Computer Programming, v. 3, Sorting and Searchingn, 2nd, Addison-Wesley, Reading, Massachusetts, 1998 | MR

[9] M. Kuba and A. Panholzer, “On the degree distribution of the nodes in increasing trees”, Journal of Combinatorial Theory, Series A, 114 (2007), 597–618 | DOI | MR | Zbl

[10] S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, “The Zagreb indices 30 years after”, Croatica Chemica ACTA, 76 (2003), 113–124

[11] A. Panholzer and H. Prodinger, “The level of nodes in increasing trees revisited”, Random Structures and Algorithms, 31 (2007), 203–226 | DOI | MR | Zbl