On covariant form of the momentum balance equation for perfect fluid
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 41-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The apparatus of differential geometry is used to represent the momentum balance equation for perfect fluid in а form that is invariant under the time-dependent coordinate transformations. This representation is obtained when The motion of fluid is described in the framework of four-dimensional formalism when the space-time is represented as a bundle over the time axis $\mathbb R$. Applications of the obtained formulation are discussed.
@article{DVMG_2015_15_1_a3,
     author = {A. I. Gudimenko and M. A. Guzev},
     title = {On covariant form of the momentum balance equation for perfect fluid},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {41--52},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a3/}
}
TY  - JOUR
AU  - A. I. Gudimenko
AU  - M. A. Guzev
TI  - On covariant form of the momentum balance equation for perfect fluid
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 41
EP  - 52
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a3/
LA  - ru
ID  - DVMG_2015_15_1_a3
ER  - 
%0 Journal Article
%A A. I. Gudimenko
%A M. A. Guzev
%T On covariant form of the momentum balance equation for perfect fluid
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 41-52
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a3/
%G ru
%F DVMG_2015_15_1_a3
A. I. Gudimenko; M. A. Guzev. On covariant form of the momentum balance equation for perfect fluid. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 41-52. http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a3/

[1] C. Truesdell, W. Noll, The non-linear field theories of mechanics, Springer-Verlag, Berlin, Heidelberg, New York, 2004, 603 pp. | MR

[2] W. Noll, Five contributions to natural philosophy, 2004 http://www.math.cmu.edu/~wn0g/noll

[3] C. Truesdell, R. Toupin, “The classical field theories”, Encyclopedia of Physics, ed. S. Flugge, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1960 | MR | Zbl

[4] J. E. Marsden, T. J. R. Hughes, Mathematical foundations of elasticity, Dover, New York, 1983 | MR

[5] G. Romano, R. Barretta, Continuum mechanics on manifolds, University of Naples Federico II, Naples, Italy, 2014 http://wpage.unina.it/romano

[6] G. Romano, R. Barretta and M. Diaco, “Geometric continuum mechanics”, Meccanica, 49:1 (2014), 111–133 | DOI | MR | Zbl

[7] A. I. Gudimenko, M. A. Guzev, “Ob invariantnoi forme zapisi zakona sokhraneniya massy”, Dalnevost. matem. zhurn., 14:1 (2014), 33–40

[8] A. I. Gudimenko, M. A. Guzev, “Geometricheskie aspekty izucheniya zakona sokhraneniya massy”, Dalnevost. matem. zhurn., 14:2 (2014), 173–190

[9] D. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[10] G. A. Sardanashvili, Sovremennye metody teorii polya, v. 2, Geometriya i klassicheskaya mekhanika, URSS, Moskva, 1998

[11] L. Mangiarotti and G. Sardanashvily, Connections in classical and quantum field theory, World Scientific, Singapore, NewJersey, London, Hong Kong, 2000 | MR | Zbl

[12] G. Lamb, Gidrodinamika, Gostekhizdat, Moskva, 1947

[13] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, v. 3, Sovremennye problemy matematiki. Fundamentalnye napravleniya, VINITI, Moskva, 1985

[14] B. Schutz, Geometrical methods of mathematical physics, Cambridge Univ. Press, Cambridge, 1980 | Zbl

[15] F. I. Dolzhanskii, Lektsii po geofizicheskoi gidrodinamiki, IBM RAN, Moskva, 2006

[16] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. VI, Gidrodinamika, Fizmatlit, Moskva, 2001

[17] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, Nauka. Gl. red. fiz.-mat. lit., Moskva, 1986 | MR

[18] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza, Ucheb. dlya vuzov., Drofa, Moskva, 2003

[19] D. V. Sivukhin, Obschii kurs fiziki, v. I, Mekhanika, Fizmatlit. Izd-vo MFTI, Moskva, 2005

[20] S. K. Godunov, E. I. Romenskii, Elementy mekhaniki sploshnykh sred i zakony sokhraneniya, Nauchnaya kniga, Novosibirsk, 1998

[21] F. Uorner, Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, Moskva, 1987 | MR

[22] I. Kolár and P. Michor and J. Slovák, Natural operations in differential geometry, Springer-Verlag, Berlin, Heidelberg, New York, 1993 | MR | Zbl