Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2015_15_1_a10, author = {I. P. Yarovenko}, title = {A formula for the gradient of the output signal in positron emission tomography}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {121--128}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a10/} }
TY - JOUR AU - I. P. Yarovenko TI - A formula for the gradient of the output signal in positron emission tomography JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2015 SP - 121 EP - 128 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a10/ LA - ru ID - DVMG_2015_15_1_a10 ER -
I. P. Yarovenko. A formula for the gradient of the output signal in positron emission tomography. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 121-128. http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a10/
[1] Visvikis D., Cheze-Le Rest C., Jarritt P., “PET technology: current trends and future developments”, British J. Radiology, 77:923 (2004), 906–910 | DOI
[2] Zaidi H., Montandon M.-L., “Scatter compensation techniques in PET”, PET Clinics, 2:2 (2007), 219–234 | DOI | MR
[3] Kazantsev I.G., Yarovenko I.P., Prokhorov I.V., “Modelirovanie protsessa izmereniya komptonovskogo rasseyaniya v pozitronnoi emissionnoi tomografii”, Vychislitelnye tekhnologii, 16:6 (2011), 27-37 | MR
[4] Kazantsev I.G., Yarovenko I.P., Prokhorov I.P., “Analiticheskoe i statisticheskoe modelirovanie formirovaniya izobrazhenii rasseyannogo izlucheniya v emissionnoi tomografii”, Interekspo Geo-Sibir, 4 (2011), 94-99
[5] Chinn G., Foudray A. M. K., Levin C. S., “A Method to include single photon events in image reconstruction for a 1 mm resolution PET system built with advanced 3-D positioning detectors”, IEEE Nucl. Sci. Symposium (San Diego, 2006), IEEE, N.Y., 2007, 1740–1745
[6] Kosters T., Natterer F., Wubbeling F., “Scatter correction in PET using the transport equation”, IEEE Nucl. Sci. Symposium (San Diego, 2006), IEEE, N.Y., 2007, 3305–3309
[7] Yarovenko I.P., “Chislennye eksperimenty s indikatorom neodnorodnosti v pozitronno-emissionnoi tomografii”, Sibirskii zhurnal industrialnoi matematiki, 2011, no. 1, 140-149 | MR | Zbl
[8] Anikonov D.S., “Postroenie indikatora neodnorodnosti pri radiatsionnom obsledovanii sredy”, Doklady RAN, 357:3 (1997), 324-327.
[9] Anikonov D.S., “Integro-differential indicator of nonhomogenity in tomography problem”, Journal of Inverse and Ill-Posed Problems, 7:1 (1999), 17-59. | DOI | MR | Zbl
[10] Anikonov D.S., “A formula for the gradient of the transport equation solution”, Journal of Inverse and Ill-Posed Problems, 4:2 (1996), 85-100 | MR | Zbl
[11] Anikonov D.S., Nazarov V.G., Prokhorov I.V., “Vidimye i nevidimye sredy v tomografii”, Doklady Akademii nauk, 357:5 (1997), 599-603 | MR | Zbl
[12] Konovalova D.S., “Poetapnoe reshenie obratnoi zadachi dlya uravneniya perenosa primenitelno k zadache tomografii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 49:1 (2009), 189-199 | MR | Zbl
[13] Konovalova D.S., Prokhorov I.V., “Chislennaya realizatsiya algoritma poetapnoi rekonstruktsii dlya zadachi rentgenovskoi tomografii”, Sibirskii zhurnal industrialnoi matematiki, 11:4 (2008), 61-65 | MR | Zbl