Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2015_15_1_a1, author = {N. V. Budarina and V. I. Bernik and F. G\"otze}, title = {Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {21--37}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a1/} }
TY - JOUR AU - N. V. Budarina AU - V. I. Bernik AU - F. Götze TI - Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2015 SP - 21 EP - 37 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a1/ LA - ru ID - DVMG_2015_15_1_a1 ER -
%0 Journal Article %A N. V. Budarina %A V. I. Bernik %A F. Götze %T Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value %J Dalʹnevostočnyj matematičeskij žurnal %D 2015 %P 21-37 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a1/ %G ru %F DVMG_2015_15_1_a1
N. V. Budarina; V. I. Bernik; F. Götze. Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 21-37. http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a1/
[1] A. J. Khintchine, “Zwei Bemerkungen zu einer Arbeit des Herrn Perron”, Math. Z., 22:1 (1925), 274–284 | DOI | MR | Zbl
[2] V. V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:2 (1999), 97–112 | MR | Zbl
[3] V. I. Bernik, “On the exact order of approximation of zero by values of integral polynomials”, Acta Arith., 53 (1989), 17–28 | MR | Zbl
[4] A. J. Khintchine, “Zur metrischen Theorie der diophantischen Approximationen”, Math. Z., 24:1 (1926), 706–714 | DOI | MR | Zbl
[5] K. Mahler, “Über das Mass der Menge aller $S$-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR
[6] V. G. Sprindzuk, Mahler's problem in metric Number Theory, Nauka i Tehnika, Minsk, 1967 | MR
[7] V. V. Beresnevich, “A Groshev type theorem for convergence on manifolds”, Acta Math. Hungar., 94:1-2 (2002), 99–130 | DOI | MR | Zbl
[8] V. I. Bernik, D. Kleinbock, G. A. Margulis, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, Internat. Math. Res. Notices, 2001, no. 9, 453–486 | DOI | MR | Zbl
[9] V. I. Bernik, N. Budarina, D. Dickinson, “A divergent Khintchine theorem in the real, complex, and $p$-adic fields”, Lith. Math. J., 48:2 (2008), 158–173 | DOI | MR | Zbl
[10] V. I. Bernik, N. Budarina, D. Dickinson, “Simultaneous Diophantine approximation in the real, complex and $p$-adic fields”, Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl
[11] Y. Bugeaud, “Approximation by algebraic integers and Hausdorff dimension”, J. Lond. Math. Soc., 65 (2002), 547–559 | DOI | MR | Zbl
[12] V. V. Beresnevich, V. I. Bernik, F. Goetze, “The distribution of close conjugate algebraic numbers”, Compositio Math., 146 (2010), 1165–1179 | DOI | MR | Zbl
[13] N. Budarina, D. Dickinson, “Simultaneous Diophantine Approximation in two metrics and the distance between conjugate algebraic numbers in $\mathbb{C}\times\mathbb{Q}_p$”, Indagationes Mathematicae, 23 (2012), 32–41 | DOI | MR | Zbl
[14] N. Budarina, D. Dickinson, Jin Yuan, “On the number of polynomials with small discriminants in the euclidean and $p$-adic metrics”, Acta Mathematica Sinica, 28:3 (2012), 469–476 | DOI | MR | Zbl
[15] N. Budarina, F. Goetze, “Distance between conjugate algebraic numbers in clusters”, Mathematical Notes, 94:5 (2013), 816–819 | DOI | MR | Zbl
[16] V. V. Beresnevich, V. I. Bernik, F. Goetze, “Simultaneous approximations of zero by an integral polynomial, its derivative, and small values of discriminants”, Dokl. Nats. Akad. Nauk Belarusi, 54:2 (2010), 26–28 | MR | Zbl
[17] V. V. Beresnevich, V. I. Bernik, F. Goetze, “On the distribution of the values of the resultants of integral polynomials”, Dokl. Nats. Akad. Nauk Belarusi, 54:5 (2010), 21–23 | MR | Zbl
[18] G. V. Chudnovsky, Contributions to the theory of transcendental numbers, Math. Surveys Monogr., 19, Amer. Math. Soc., Providence, RI, 1984 | MR | Zbl
[19] P. L. Cijsouw, Transcendental numbers, North-Holland, Amsterdam, 1972
[20] V. I. Bernik, “The metric theorem on the simultaneous approximation of zero by values of integral polynomials”, Izv. Akad. Nauk SSSR, Ser. Mat., 44 (1980), 24–45 | MR | Zbl
[21] V. I. Bernik, “Application of the Hausdorff dimension in the theory of Diophantine approximations”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl
[22] A. O. Gelfond, Transcendental and algebraic numbers, Gosudartsv. Izdat. Tehn.-Teor. Lit., Moscow, 1952 | MR