Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value
Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 21-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain the effective estimates in the terms of $n$ and $Q$ for the measure of the sets of real numbers with the given approximation property by algebraic numbers of degree $n$ and height bounded by $Q\in\mathbb{N}$.
@article{DVMG_2015_15_1_a1,
     author = {N. V. Budarina and V. I. Bernik and F. G\"otze},
     title = {Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {21--37},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a1/}
}
TY  - JOUR
AU  - N. V. Budarina
AU  - V. I. Bernik
AU  - F. Götze
TI  - Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2015
SP  - 21
EP  - 37
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a1/
LA  - ru
ID  - DVMG_2015_15_1_a1
ER  - 
%0 Journal Article
%A N. V. Budarina
%A V. I. Bernik
%A F. Götze
%T Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2015
%P 21-37
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a1/
%G ru
%F DVMG_2015_15_1_a1
N. V. Budarina; V. I. Bernik; F. Götze. Effective estimations of the measure of the sets of real numbers in which integer polynomials take small value. Dalʹnevostočnyj matematičeskij žurnal, Tome 15 (2015) no. 1, pp. 21-37. http://geodesic.mathdoc.fr/item/DVMG_2015_15_1_a1/

[1] A. J. Khintchine, “Zwei Bemerkungen zu einer Arbeit des Herrn Perron”, Math. Z., 22:1 (1925), 274–284 | DOI | MR | Zbl

[2] V. V. Beresnevich, “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:2 (1999), 97–112 | MR | Zbl

[3] V. I. Bernik, “On the exact order of approximation of zero by values of integral polynomials”, Acta Arith., 53 (1989), 17–28 | MR | Zbl

[4] A. J. Khintchine, “Zur metrischen Theorie der diophantischen Approximationen”, Math. Z., 24:1 (1926), 706–714 | DOI | MR | Zbl

[5] K. Mahler, “Über das Mass der Menge aller $S$-Zahlen”, Math. Ann., 106 (1932), 131–139 | DOI | MR

[6] V. G. Sprindzuk, Mahler's problem in metric Number Theory, Nauka i Tehnika, Minsk, 1967 | MR

[7] V. V. Beresnevich, “A Groshev type theorem for convergence on manifolds”, Acta Math. Hungar., 94:1-2 (2002), 99–130 | DOI | MR | Zbl

[8] V. I. Bernik, D. Kleinbock, G. A. Margulis, “Khintchine-type theorems on manifolds: the convergence case for standard and multiplicative versions”, Internat. Math. Res. Notices, 2001, no. 9, 453–486 | DOI | MR | Zbl

[9] V. I. Bernik, N. Budarina, D. Dickinson, “A divergent Khintchine theorem in the real, complex, and $p$-adic fields”, Lith. Math. J., 48:2 (2008), 158–173 | DOI | MR | Zbl

[10] V. I. Bernik, N. Budarina, D. Dickinson, “Simultaneous Diophantine approximation in the real, complex and $p$-adic fields”, Math. Proc. Cambridge Philos. Soc., 149:2 (2010), 193–216 | DOI | MR | Zbl

[11] Y. Bugeaud, “Approximation by algebraic integers and Hausdorff dimension”, J. Lond. Math. Soc., 65 (2002), 547–559 | DOI | MR | Zbl

[12] V. V. Beresnevich, V. I. Bernik, F. Goetze, “The distribution of close conjugate algebraic numbers”, Compositio Math., 146 (2010), 1165–1179 | DOI | MR | Zbl

[13] N. Budarina, D. Dickinson, “Simultaneous Diophantine Approximation in two metrics and the distance between conjugate algebraic numbers in $\mathbb{C}\times\mathbb{Q}_p$”, Indagationes Mathematicae, 23 (2012), 32–41 | DOI | MR | Zbl

[14] N. Budarina, D. Dickinson, Jin Yuan, “On the number of polynomials with small discriminants in the euclidean and $p$-adic metrics”, Acta Mathematica Sinica, 28:3 (2012), 469–476 | DOI | MR | Zbl

[15] N. Budarina, F. Goetze, “Distance between conjugate algebraic numbers in clusters”, Mathematical Notes, 94:5 (2013), 816–819 | DOI | MR | Zbl

[16] V. V. Beresnevich, V. I. Bernik, F. Goetze, “Simultaneous approximations of zero by an integral polynomial, its derivative, and small values of discriminants”, Dokl. Nats. Akad. Nauk Belarusi, 54:2 (2010), 26–28 | MR | Zbl

[17] V. V. Beresnevich, V. I. Bernik, F. Goetze, “On the distribution of the values of the resultants of integral polynomials”, Dokl. Nats. Akad. Nauk Belarusi, 54:5 (2010), 21–23 | MR | Zbl

[18] G. V. Chudnovsky, Contributions to the theory of transcendental numbers, Math. Surveys Monogr., 19, Amer. Math. Soc., Providence, RI, 1984 | MR | Zbl

[19] P. L. Cijsouw, Transcendental numbers, North-Holland, Amsterdam, 1972

[20] V. I. Bernik, “The metric theorem on the simultaneous approximation of zero by values of integral polynomials”, Izv. Akad. Nauk SSSR, Ser. Mat., 44 (1980), 24–45 | MR | Zbl

[21] V. I. Bernik, “Application of the Hausdorff dimension in the theory of Diophantine approximations”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl

[22] A. O. Gelfond, Transcendental and algebraic numbers, Gosudartsv. Izdat. Tehn.-Teor. Lit., Moscow, 1952 | MR