Stochastic First Integrals, Kernel Functions for Integral Invariants and the Kolmogorov equations
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 200-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the authors present stochastic first integrals (SFI), the generalized Itô-Wentzell formula and its application for obtaining the equations for SFI, for kernel functions for integral invariants and the Kolmogorov equations which described by the generalized Itô equations.
@article{DVMG_2014_14_2_a6,
     author = {V. A. Dubko and E. V. Karachanskaya},
     title = {Stochastic {First} {Integrals,} {Kernel} {Functions} for {Integral} {Invariants} and the {Kolmogorov} equations},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {200--216},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a6/}
}
TY  - JOUR
AU  - V. A. Dubko
AU  - E. V. Karachanskaya
TI  - Stochastic First Integrals, Kernel Functions for Integral Invariants and the Kolmogorov equations
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 200
EP  - 216
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a6/
LA  - ru
ID  - DVMG_2014_14_2_a6
ER  - 
%0 Journal Article
%A V. A. Dubko
%A E. V. Karachanskaya
%T Stochastic First Integrals, Kernel Functions for Integral Invariants and the Kolmogorov equations
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 200-216
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a6/
%G ru
%F DVMG_2014_14_2_a6
V. A. Dubko; E. V. Karachanskaya. Stochastic First Integrals, Kernel Functions for Integral Invariants and the Kolmogorov equations. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 2, pp. 200-216. http://geodesic.mathdoc.fr/item/DVMG_2014_14_2_a6/

[1] V. A. Dubko, Pervyi integral sistemy stokhasticheskikh differentsialnykh uravnenii, preprint, In-t matematiki AN USSR, Kiev, 1978

[2] N. V. Krylov, B. L. Rozovskii, “Stokhasticheskie differentsialnye uravneniya v chastnykh proizvodnykh i diffuzionnye protsessy”, Uspekhi mat. nauk, 37:6 (1982), 75–95 | MR | Zbl

[3] V. A. Dubko, “Otkrytye evolyutsioniruyuschie sistemy.”, Persha mizhnarodna naukovo-praktichna konferentsiya “Vidkriti evolyutsionuyuchi sistemi” (26–27 kvit. 2002 r., Kiïv (Dodatok)), VNZ VMURoL, Kiï, 2002, 14–31

[4] V. A. Dubko, Voprosy teorii i primeneniya stokhasticheskikh differentsialnykh uravnenii, DVNTs AN SSSR, Vladivostok, 1989 | MR

[5] V. A. Dubko, “Otkrtytye dinamicheskie sistemy”, V poiskakh skrytogo poryadka, Dalnauka, Vladivostok, 1995, 94–116

[6] V. A. Dubko, “Integralni invarianti dlya odnogo klasu sistem stokhastichnikh diferentsialnikh rivnyan”, Dokl. AN USSR, A:1 (1984), 18–21 | Zbl

[7] V. A. Dubko, “Integralnye invarianty, pervye integraly i prityagivayuschie mnogoobraziya stokhasticheskikh differentsialnykh uravnenii dlya odnogo klassa stokhasticheskikh differentsialnykh uravnenii”, Cb. nauch. tr. NAN Ukrainy, In-t matematiki NAN Ukrainy, Kiev, 1998, 87–90

[8] V. A. Dubko, “Integralnye invarianty uravnenii Ito i ikh svyaz s nekotorymi zadachami teorii sluchainykh protsessov”, Dokl. NAN Ukrainy, 2002, no. 1, 24–29 | MR | Zbl

[9] E. Karachanskaya(Chalykh), “Dynamics of random chains of finite size with an infinite number of elements in $ {\mathbb R}^{2} $”, Theory of Stochastic Processes, 16 (32):2 (2010), 58–68 | MR | Zbl

[10] V. A. Dubko, E. V. Chalykh, Brounovskoe dvizhenie s determinirovannym modulem skorosti, Preprint, In-t mat. NAN Ukrainy, Kiev, 1997 | MR

[11] E. V. Chalykh, “Obobschenie modelei brounovskogo dvizheniya so sluchainymi ortogonalnymi vozdeistviyami”, Druga mizhnarodna naukovo-praktichna konferentsiya «Vidkriti evolyutsionuyuchi sistemi» (1–30 grudnya 2003 r.), VNZ VMURoL, Kiev, 2003, 90–93

[12] V. A. Dubko, E. V. Chalykh, “Postroenie analiticheskogo resheniya dlya odnogo klassa uravnenii tipa Lanzhevena s ortogonalnymi sluchainymi vozdeistviyami”, Ukr. mat. zhurn., 50:4 (1998), 666–668 | MR | Zbl

[13] E. V. Karachanskaya, V. A. Dubko, Primenenie kharakteristicheskikh funktsii v teorii veroyatnostei i teorii sluchainykh protsessov, uchebnoe posobie, Izd-vo Tikhookean. gos. un-ta, Khabarovsk, 2010

[14] E. V. Karachanskaya, “Momentnye kharakteristiki i dinamika polozheniya diffundiruyuschei na sfere tochki pod deistviem puassonovskikh skachkov”, Vestnik Tikhookeanskogo gosuniversiteta, 2012, no. 1(24), 69–72

[15] E. V. Karachanskaya, “Ob odnom obobschenii formuly Ito – Venttselya”, Obozrenie prikladnoi i promyshlennoi matematiki, 18:2 (2011), 494–496

[16] V. A. Dubko, E. V. Karachanskaya, O dvukh podkhodakh k postroeniyu obobschennoi formuly Ito – Venttselya, preprint No174, Izd-vo Tikhookean. gos. un-ta, Khabarovsk, 2012

[17] E. V. Karachanskaya, “Obobschennaya formula Ito – Venttselya dlya sluchaya netsentrirovannoi puassonovskoi mery, stokhasticheskii pervyi integral i pervyi integral”, Matematicheskie trudy, 17:1 (2014), 299–122 | MR

[18] E. V. Chalykh, “Programmnoe upravlenie s veroyatnostyu 1 dlya otkrytykh sistem”, Obozrenie prikladnoi i promyshlennoi matematiki, 14:2 (2007), 253–254 | MR

[19] E. V. Chalykh, “Postroenie mnozhestva programmnykh upravlenii s veroyatnostyu 1 dlya odnogo klassa stokhasticheskikh sistem”, Avtomatika i telemekhanika, 70:8 (2009), 110–122 | MR | Zbl

[20] E. V. Karachanskaya, “Postroenie programmnykh upravlenii s veroyatnostyu 1 dlya dinamicheskoi sistemy s puassonovskimi vozmuscheniyami”, Vestnik Tikhookeanskogo gosudarstvennogo universiteta, 2011, no. 2 (21), 51–60

[21] A. D. Venttsel, “Ob uravneniyakh teorii uslovnykh markovskikh protsessov”, Teoriya veroyatnostei i eë primenenie, Kh:2 (1965), 390–393

[22] V. A. Dubko, E. V. Karachanskaya, Spetsialnye razdely teorii stokhasticheskikh differentsi alnykh uravnenii, ucheb. posobie, Izd-vo Tikhookean. gos. un-ta, Khabarovsk, 2013

[23] I. I. Gikhman, A. V. Skorokhod, Stokhasticheskie differentsialnye uravneniya, Nauk. dumka, Kiev, 1968 | MR | Zbl

[24] B. Øksendal and T. Zhang, “The Ito-Ventcel formula and forward stochastic differential equation driven by Poisson random measures”, Osaka J. Math., 44 (2007), 207–230 | MR

[25] B. Øksendal and A. Sulem and T. Zhang, “A stochastic HJB equation for optimal control of forward-backward SDEs”, http://arxiv.org/abs/1312.1472v1

[26] V. A. Dubko, Stokhasticheskie differentsialnye uravneniya v nekotorykh zadachakh matematicheskoi fiziki, Dissertatsiya na soiskanie uch. stepeni kand. fiz.-mat. nauk; Institut matematiki AN USSR, Kiev, 1979

[27] V. I. Zubov, Dinamika upravlyaemykh sistem, Uchebnoe posobie dlya vuzov, Vysshaya shkola, M., 1982 | MR