Calculation of a Gauss sum via the discrete Fourier transform
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 90-95
Cet article a éte moissonné depuis la source Math-Net.Ru
The explicit formula for a Gauss sum is proved using the discrete Fourier transform. The Gauss quadratic reciprocity law is established as a corollary.
@article{DVMG_2014_14_1_a7,
author = {A. V. Ustinov},
title = {Calculation of a {Gauss} sum via the discrete {Fourier} transform},
journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
pages = {90--95},
year = {2014},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a7/}
}
A. V. Ustinov. Calculation of a Gauss sum via the discrete Fourier transform. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 90-95. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a7/
[1] N. V. Budarina, V. A. Bykovskii, “Arifmeticheskaya priroda tozhdestv dlya troinogo i pyatikratnogo proizvedenii”, Dalnevost. matem. zhurn., 11:2 (2011), 140–148 | MR
[2] P. G. L. Dirikhle, Lektsii po teorii chisel, ONTI MKTP, 1936
[3] G. Devenport, Multiplikativnaya teoriya chisel, Nauka, Moskva, 1971 | MR
[4] N. M. Korobov, Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl
[5] N. M. Korobov, “Spetsialnye polinomy i ikh prilozheniya Diofantovy priblizheniya”, Matem. Zapiski, 2 (1996), 77–89 | MR
[6] Math. Notes, 73:1 (2003), 97–102 | DOI | DOI | MR | Zbl
[7] A. V. Ustinov, “Elementarnyi podkhod k vychisleniyu $\zeta(2n)$”, Chebyshevskii sbornik, 4 (2003), 106–110 | MR | Zbl