Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2014_14_1_a3, author = {M. A. Guzev}, title = {Spectral characteristics of the self-balanced stress fields}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {41--47}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a3/} }
M. A. Guzev. Spectral characteristics of the self-balanced stress fields. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 41-47. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a3/
[1] K. S. Alan, S. D. Akbarov, “The Self-Balanced Shear Stresses in the Elastic Body with a Locally Curved Covered Fiber”, Advances in Mechanical Engineering, 2010 (2010), 1–14 | DOI
[2] I. P. Mazur, S. M. Bel'skii, “The St Venant Zone Extent of the Self-Balancing Longitudinal Elastic”, Materials Science Forum, 704–705 (2011), 33–39 | DOI
[3] A. Carpinteri, L. Montanari, A. Spagnoli, Fatigue Fractal Crack Propagating in a Self-Balanced Microstress Field http://www.gruppofrattura.it/ocs/index.php/esis/CP2012/paper/view/9206
[4] A. Perelmuter,V. I. Slivker, Numerical Structural Analysis: Methods, Models and Pitfalls, Springer-Verlag, Berlin Heidelberg, 2003, 501 pp.
[5] S. D. Akbarov, A. N. Guz, Mechanics of Curved Composites, Kluwer Academic Publishers, 2001, 448 pp.
[6] Zongjin Li, Advanced Concrete Technology, John Wiley Sons, 2011, 624 pp.
[7] G. H. Farrahi, G. Z. Voyiadjis, S. H. Hoseini, E. Hosseinian, “Residual Stress Analysis of the Autofrettaged Thick-Walled Tube Using Nonlinear Kinematic Hardening”, Journal of Pressure Vessel Technology, 135:2 (2013) | DOI
[8] S. Feli, M. E. A. Aaleagha, M. Foroutan, E. B. Farahani, “Finite Element Simulation of Welding Sequences Effect on Residual Stresses in Multipass Butt-Welded Stainless Steel Pipes”, Journal of Pressure Vessel Technology, 134:1 (2011)
[9] V. P. Myasnikov, M. A. Guzev, A. A. Ushakov, “Structure of self-balanced stresses in continuum”, FEMJ, 3:2 (2002), 231–241
[10] M. A. Guzev, “Structure of Kinematic and Force Field in the Riemannian Coninuum Model”, Journal of Applied Mechanics and Technical Physics, 52:5 (2011), 709–716 | DOI | MR | Zbl