Spectral characteristics of the self-balanced stress fields
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 41-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a class of self-balanced stress fields which is parameterized by a stress function. The fuction is considered to be an element of the spectrum of the biharmonic operator. For different types of boundary conditions we constructed the spectral characteristics of the operator.
@article{DVMG_2014_14_1_a3,
     author = {M. A. Guzev},
     title = {Spectral characteristics of the self-balanced stress fields},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {41--47},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a3/}
}
TY  - JOUR
AU  - M. A. Guzev
TI  - Spectral characteristics of the self-balanced stress fields
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 41
EP  - 47
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a3/
LA  - ru
ID  - DVMG_2014_14_1_a3
ER  - 
%0 Journal Article
%A M. A. Guzev
%T Spectral characteristics of the self-balanced stress fields
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 41-47
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a3/
%G ru
%F DVMG_2014_14_1_a3
M. A. Guzev. Spectral characteristics of the self-balanced stress fields. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 41-47. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a3/

[1] K. S. Alan, S. D. Akbarov, “The Self-Balanced Shear Stresses in the Elastic Body with a Locally Curved Covered Fiber”, Advances in Mechanical Engineering, 2010 (2010), 1–14 | DOI

[2] I. P. Mazur, S. M. Bel'skii, “The St Venant Zone Extent of the Self-Balancing Longitudinal Elastic”, Materials Science Forum, 704–705 (2011), 33–39 | DOI

[3] A. Carpinteri, L. Montanari, A. Spagnoli, Fatigue Fractal Crack Propagating in a Self-Balanced Microstress Field http://www.gruppofrattura.it/ocs/index.php/esis/CP2012/paper/view/9206

[4] A. Perelmuter,V. I. Slivker, Numerical Structural Analysis: Methods, Models and Pitfalls, Springer-Verlag, Berlin Heidelberg, 2003, 501 pp.

[5] S. D. Akbarov, A. N. Guz, Mechanics of Curved Composites, Kluwer Academic Publishers, 2001, 448 pp.

[6] Zongjin Li, Advanced Concrete Technology, John Wiley Sons, 2011, 624 pp.

[7] G. H. Farrahi, G. Z. Voyiadjis, S. H. Hoseini, E. Hosseinian, “Residual Stress Analysis of the Autofrettaged Thick-Walled Tube Using Nonlinear Kinematic Hardening”, Journal of Pressure Vessel Technology, 135:2 (2013) | DOI

[8] S. Feli, M. E. A. Aaleagha, M. Foroutan, E. B. Farahani, “Finite Element Simulation of Welding Sequences Effect on Residual Stresses in Multipass Butt-Welded Stainless Steel Pipes”, Journal of Pressure Vessel Technology, 134:1 (2011)

[9] V. P. Myasnikov, M. A. Guzev, A. A. Ushakov, “Structure of self-balanced stresses in continuum”, FEMJ, 3:2 (2002), 231–241

[10] M. A. Guzev, “Structure of Kinematic and Force Field in the Riemannian Coninuum Model”, Journal of Applied Mechanics and Technical Physics, 52:5 (2011), 709–716 | DOI | MR | Zbl