The stability of steady-state solutions of the diffusion complex heat transfer model
Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonstationary model of radiative-convective-conductive heat transfer in a three-dimensional domain within the diffusion $P_1$ approximation of radiative transfer is considered. The sufficient conditions of asymptotic stability of steady states are established.
@article{DVMG_2014_14_1_a1,
     author = {G. V. Grenkin and A. Yu. Chebotarev},
     title = {The stability of steady-state solutions of the diffusion complex heat transfer model},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a1/}
}
TY  - JOUR
AU  - G. V. Grenkin
AU  - A. Yu. Chebotarev
TI  - The stability of steady-state solutions of the diffusion complex heat transfer model
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2014
SP  - 18
EP  - 32
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a1/
LA  - ru
ID  - DVMG_2014_14_1_a1
ER  - 
%0 Journal Article
%A G. V. Grenkin
%A A. Yu. Chebotarev
%T The stability of steady-state solutions of the diffusion complex heat transfer model
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2014
%P 18-32
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a1/
%G ru
%F DVMG_2014_14_1_a1
G. V. Grenkin; A. Yu. Chebotarev. The stability of steady-state solutions of the diffusion complex heat transfer model. Dalʹnevostočnyj matematičeskij žurnal, Tome 14 (2014) no. 1, pp. 18-32. http://geodesic.mathdoc.fr/item/DVMG_2014_14_1_a1/

[1] D. A. Boas, Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications, A Ph.D. Dissertation in Physics, University of Pennsylvania, 1996

[2] M. F. Modest, Radiative Heat Transfer, Academic Press, 2003

[3] S. E. Siewert, “An improved iterative method for solving a class of coupled conductive-radiative heat-transfer problems”, J. Quant. Spectrosc. Radiat. Transfer., 54:4 (1995), 599–605 | DOI | MR

[4] J. M. Banoczi, C. T. Kelley, “A fast multilevel algorithm for the solution of nonlinear systems of conductive-radiative heat transfer equations”, SIAM J. Sci. Comput., 19:1 (1998), 266–279 | DOI | MR | Zbl

[5] A. Klar, N. Siedow, “Boundary layers and domain decomposition for radiative heat transfer and diffusion equations: applications to glass manufacturing process”, Eur. J. Appl. Math., 9:4 (1998), 351–372 | DOI | MR | Zbl

[6] G. Thömes, R. Pinnau, M. Sea\"{i}d, T. Götz, A. Klar, “Numerical methods and optimal control for glass cooling processes”, Trans. Theory Stat. Phys., 31:4-6 (2002), 513–529 | DOI | MR

[7] R. Pinnau, M. Seaid, “Simplified PN Models and Natural Convection–Radiation”, Math. in Industry, V. 12 (2008), 397–401. | DOI | MR | Zbl

[8] A. E. Kovtanyuk, N. D. Botkin, K.-H. Hoffmann, “Numerical simulations of a coupled conductive-radiative heat transfer model using a modified Monte Carlo method”, Int. J. Heat and Mass Transfer., 55 (2012), 649–654 | DOI | Zbl

[9] A. E. Kovtanyuk, “Algoritmy parallelnykh vychislenii dlya zadach radiatsionno-konduktivnogo teploobmena”, Kompyuternye issledovaniya i modelirovanie, 4:3 (2012), 543–552

[10] A. E. Kovtanyuk, A. Yu. Chebotarev, “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219 (2013), 956–9362 | DOI | MR

[11] A. A. Amosov, “Globalnaya razreshimost odnoi nelineinoi nestatsionarnoi zadachi s nelokalnym kraevym usloviem tipa teploobmena izlucheniem”, Differentsialnye uravneniya, 41:1 (2005), 93–104 | MR | Zbl

[12] R. Pinnau, “Analysis of Optimal Boundary Control for Radiative Heat Transfer Modelled by the SP$_1$-System”, Comm. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl

[13] P.-E. Druet, “Existence of weak solutions to the time-dependent MHD-equations coupled to heat transfer with nonlocal radiation boundary conditions”, Nonlinear Anal. Real World Appl., 10:5 (2009), 2914–2936 | DOI | MR | Zbl

[14] B. Ducomet, S. Necasova, “Global Weak Solutions to the 1D Compressible Navier-Stokes Equations with Radiation”, Commun. Math. Anal., 8:3 (2010), 23–65 | MR | Zbl

[15] O. Tse, R. Pinnau, N. Siedow, “Identification of temperature dependent parameters in laser–interstitial thermo therapy”, Math. Models Methods Appl. Sci., 22:9 (2012), 1–29 | DOI | MR

[16] C. T. Kelley, “Existence and uniqueness of solutions of nonlinear systems of conductive-radiative heat transfer equations”, Transport Theory Statist. Phys., 25:2 (1996), 249–260 | DOI | MR | Zbl

[17] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “The unique solvability of a complex 3D heat transfer problem”, J. Math. Anal. Appl., 409:2 (2014), 808–815 | DOI | MR

[18] A. E. Kovtanyuk, A. Yu. Chebotarev, N. D. Botkin, K.-H. Hoffmann, “Theoretical analysis of an optimal control problem of conductive-convective-radiative heat transfer”, J. Math. Anal. Appl., 412:1 (2014), 520–528 | DOI | MR

[19] A. E. Kovtanyuk, A. Yu. Chebotarev, “Statsionarnaya zadacha slozhnogo teploobmena”, Zh. vychisl. matem. fiz., 54:4 (2014), 191-199 | MR

[20] A. A. Amosov, “O razreshimosti odnoi zadachi teploobmena izlucheniem”, Dokl. AN SSSR, 245:6 (1979), 1341–1344 | MR

[21] M. T. Laitinen, T. Tiihonen, “Heat transfer in conducting, radiating and semitransparent materials”, Math. Meth. Appl. Sci., 21 (1998), 375–392 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[22] M. Laitinen, “Asymptotic analysis of conductive-radiative heat transfer”, Asymptotic Analysis, 29:3-4 (2002), 323–342 | MR | Zbl

[23] A. A. Amosov, “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 164:3 (2010), 309–344 | DOI | MR

[24] A. A. Amosov, “Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, Journal of Mathematical Sciences, 165:1 (2010), 1–41 | DOI | MR

[25] Partial Differential Equations — MATLAB Simulink http://www.mathworks.com/help/matlab/math/partial-differential-equations.html