Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2013_13_2_a5, author = {S. N. Korobeinikov and A. A. Oleinikov and A. U. Larichkin and A. V. Babichev and V. V. Alekhin}, title = {Computer implementation of {Lagrangian} formulation of {Hencky's} isotropic hyperelastic material constitutive relations}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {222--249}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a5/} }
TY - JOUR AU - S. N. Korobeinikov AU - A. A. Oleinikov AU - A. U. Larichkin AU - A. V. Babichev AU - V. V. Alekhin TI - Computer implementation of Lagrangian formulation of Hencky's isotropic hyperelastic material constitutive relations JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2013 SP - 222 EP - 249 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a5/ LA - ru ID - DVMG_2013_13_2_a5 ER -
%0 Journal Article %A S. N. Korobeinikov %A A. A. Oleinikov %A A. U. Larichkin %A A. V. Babichev %A V. V. Alekhin %T Computer implementation of Lagrangian formulation of Hencky's isotropic hyperelastic material constitutive relations %J Dalʹnevostočnyj matematičeskij žurnal %D 2013 %P 222-249 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a5/ %G ru %F DVMG_2013_13_2_a5
S. N. Korobeinikov; A. A. Oleinikov; A. U. Larichkin; A. V. Babichev; V. V. Alekhin. Computer implementation of Lagrangian formulation of Hencky's isotropic hyperelastic material constitutive relations. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 2, pp. 222-249. http://geodesic.mathdoc.fr/item/DVMG_2013_13_2_a5/
[1] L. Anand, “On Hencky's approximate strain-energy function for moderate deformations”, Trans. ASME, J. Appl. Mech., 46:1 (1979), 78–82 | DOI | MR | Zbl
[2] L. Anand, “Moderate deformations in extension-torsion of incompressible isotropic elastic materials”, J. Mech. Phys. Solids., 34 (1986), 293–304 | DOI
[3] K.-J. Bathe, Finite Element Procedures, Prentice Hall, Upper Saddle River, N.J., 1996
[4] J. Bonet, R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[5] R. Brown, Physical Testing of Rubber, 4th ed., Springer, N.Y., 2006
[6] A. Curnier, L. Rakotomanana, “Generalized strain and stress measures: critical survey and new results”, Eng. Trans., 39:3–4 (1991), 461–538 | MR
[7] A. Curnier, Computational Methods in Solid Mechanics, Kluwer Academic Publ., Dordrecht, 1994 | MR | Zbl
[8] H. Darijani, R. Naghdabadi, “Hyperelastic materials behavior modeling using consistent strain energy density functions”, Acta Mech., 213 (2010), 235–254 | DOI | Zbl
[9] H. Darijani, R. Naghdabadi, “Constitutive modeling of solids at finite deformation using a second-order stress-strain relation”, Int. J. Engng Sci., 48 (2010), 223–236 | DOI
[10] R. Hill, “On uniqueness and stability in the theory of finite elastic strain”, J. Mech. Phys. Solids., 5:4 (1957), 229–241 | DOI | MR | Zbl
[11] R. Hill, “A general theory of uniqueness and stability in elastic-plastic solids”, J. Mech. Phys. Solids., 6:3 (1958), 236–249 | DOI | MR | Zbl
[12] R. Hill, “Some basic principles in the mechanics of solids without a natural time”, J. Mech. Phys. Solids., 7:3 (1959), 209–225 | DOI | MR | Zbl
[13] R. Hill, “On constitutive inequalities for simple materials — I”, J. Mech. Phys. Solids., 16:4 (1968), 229–242 | DOI | Zbl
[14] R. Hill, “Aspects of invariance in solid mechanics”, Advances in Applied Mechanics, 18, Academic Press, New York, 1–75 | DOI | MR
[15] G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Egineering, Wiley, Chichester et al., 2000 | MR | Zbl
[16] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, Englewood Cliffs, 1987 | MR | Zbl
[17] M. Kleiber, Incremental Finite Element Modelling in Non-linear Solid Mechanics, Ellis Horwood, Chichester, 1989 | MR | Zbl
[18] S. N. Korobeinikov, Preprint No 1-97, RAN. Sib. otd-nie. Institut gidrodinamiki, Novosibirsk, 1997
[19] S. N. Korobeinikov, Nelineinoe deformirovanie tverdykh tel, Iz-vo SO RAN, Novosibirsk, 2000
[20] S. N. Korobeinikov, “Strogo sopryazhennye tenzory napryazhenii i deformatsii”, PMTF, 41:3 (2000), 149–154 | MR
[21] S. N. Korobeinikov, “Chislennoe reshenie uravnenii s osobennostyami deformirovaniya uprugoplasticheskikh obolochek vrascheniya”, Vychislitelnye tekhnologii, 6:5 (2001), 39–59
[22] S. N. Korobeinikov, “The numerical solution of nonlinear problems on deformation and buckling of atomic lattices”, Int. J. Fracture, 128 (2004), 315–323 | DOI | Zbl
[23] S. N. Korobeynikov, “Objective tensor rates and applications in formulation of hyperelastic relations”, J. Elast., 93 (2008), 105–140 | DOI | MR | Zbl
[24] S. N. Korobeynikov, “Families of continuous spin tensors and applications in continuum mechanics”, Acta Mech., 216:1–4 (2011), 301–332 | DOI | Zbl
[25] S. N. Korobeinikov, A. A. Oleinikov, “Lagranzheva formulirovka opredelyayuschikh sootnoshenii giperuprugogo materiala Genki”, Dalnevostochnyi matematicheskii zhurnal, 11:2 (2011), 155–180 | MR
[26] MARC Users Guide, v. A, Theory and Users Information, MSC. Software Corporation, Santa Ana (CA), 2010
[27] MARC Users Guide. B. Element Library, MSC. Software Corporation, Santa Ana (CA), 2010
[28] MARC Users Guide. D. User Subroutines and Special Routines, MSC. Software Corporation, Santa Ana (CA), 2010
[29] R. W. Ogden, Non-linear Elastic Deformations, Ellis Horwood, Chichester, 1984 | Zbl
[30] J. Plesek, A. Kruisova, “Formulation, validation and numerical procedures for Hencky's elasticity model”, Computers and Structures, 84 (2006), 1141–1150 | DOI
[31] V. I. Shalashilin, E. B. Kuznetsov, Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, URSS, M., 1999 | MR
[32] G. Streng, Dzh. Fiks, Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR
[33] J. M. T. Thompson, “Bifurcational instability of an atomic lattice”, Instabilities and Catastrophes in Science and Engineering, ed. J.M.T. Thompson, Wiley, Chichester et al., 1982, 101–124 | MR
[34] C. Truesdell, W. Noll, Handbuch der Physik. III/3. The Non-linear Field Theories of Mechanics, ed. S. Flügge, Springer, New York, 1965 | MR | Zbl
[35] V. Tvergaard, A. Needleman, “On the development of localized buckling patterns”, Collapse: the Buckling of Structures in Theory and Practice, Proc. Int. Symp., eds. J.M.T. Thompson, G.W. Hunt, Cambridge Univ. Press, Cambridge, 1983, 11–24
[36] K. Vasidzu, Variatsionnye metody v teorii uprugosti i plastichnosti, Mir, M., 1987
[37] H. Xiao, O. T. Bruhns, A. Meyers, “Logarithmic strain, logarithmic spin and logarithmic rate”, Acta Mech., 124 (1997), 89–105 | DOI | MR | Zbl
[38] H. Xiao, O. T. Bruhns, A. Meyers, “Hypo-elasticity model based upon the logarithmic stress rate”, J. Elast., 47 (1997), 51–68 | DOI | MR | Zbl
[39] O. C. Zienkiewicz, R. L. Taylor, The Finite Element Method, 4th ed., Butterworth-Heinemann, Oxford, 2000