Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2013_13_1_a4, author = {E. A. Kalinina}, title = {Common eigenvalues of two matrices}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {52--60}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a4/} }
E. A. Kalinina. Common eigenvalues of two matrices. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 52-60. http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a4/
[1] M. Bokher, Vvedenie v vysshuyu algebru, GTTI, M.-L., 1933
[2] E. Dzhuri, Innory i ustoichivost dinamicheskikh sistem, Nauka, M., 1979
[3] E. A. Kalinina, A. Yu. Uteshev, Teoriya isklyucheniya. Ucheb. posobie, NII Khimii SPbGU, SPb., 2002
[4] C. C. MacDuffee, The Theory of Matrices, Chelsea Publishing Company, N.-Y., 1956
[5] K. Datta, “An algorithm to determine if two matrices have common eigenvalues”, IEEE Transactions on Automatic Control, 27:5 (1982), 1131–1133 | DOI | MR | Zbl
[6] T. D. Roopamala, S. K. Katti, “New Approach to Identify Common Eigenvalues of real matrices using Gerschgorin Theorem and Bisection method”, (IJCSIS) International Journal of Computer Science and Information Security, 7:2 (2010)
[7] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR