Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DVMG_2013_13_1_a3, author = {I. M. Juraev}, title = {Lie derivations on the algebra of measurable operators affiliated with a type {I} finite von {Neumann} algebra}, journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal}, pages = {43--51}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/} }
TY - JOUR AU - I. M. Juraev TI - Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra JO - Dalʹnevostočnyj matematičeskij žurnal PY - 2013 SP - 43 EP - 51 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/ LA - ru ID - DVMG_2013_13_1_a3 ER -
%0 Journal Article %A I. M. Juraev %T Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra %J Dalʹnevostočnyj matematičeskij žurnal %D 2013 %P 43-51 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/ %G ru %F DVMG_2013_13_1_a3
I. M. Juraev. Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 43-51. http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/
[1] S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, “Structure of derivations on various algebras of measurable operators for type I von Neumann algebras”, J. Func. Anal., 256 (2009), 2917–2943 | DOI | MR | Zbl
[2] P. Ara, M. Mathieu, Local multipliers of $C^*$-algebras, Springer-Verlag, New York-Heidelberg-Berlin, 2002 | MR
[3] R. Banning, M. Mathieu, “Commutativity preserving mappings on semiprime rings”, Comm. Algebra, 25 (1997), 247–265 | DOI | MR | Zbl
[4] M. Brešar, “Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings”, Trans. Amer. Math. Soc., 335 (1993), 525-546 | DOI | MR | Zbl
[5] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs, Oxford Press., Oxford., 2000 | MR | Zbl
[6] I. N. Herstein, “Lie and Jordan structures in simple, associative rings”, Bull. Amer. Math. Soc., 67 (1961), 517–531 | DOI | MR | Zbl
[7] B. E. Johnson, “Symmetric amenability and the nonexistence of Lie and Jordan derivatuons”, Math. Proc. Cambridge Philos. Soc., 120 (1996), 455–473 | DOI | MR | Zbl
[8] W. S. Martindale III, “Lie derivations of primitive rings.”, Michigan Math. J., 11 (1964), 183–187 | DOI | MR | Zbl
[9] M. Mathieu, A. R. Villena, “The structure of Lie derivations on $C^*$-algebras”, J. Func. Anal., 202 (2003), 504–525 | DOI | MR | Zbl
[10] C. R. Miers, “Lie derivations of von Neumann algebras”, J. Duke Math., 40 (1973), 403–409 | DOI | MR | Zbl
[11] S. Sakai, $C^*$-algebras and $W^{*}$-algebras, Springer-Verlag, New York-Heidelberg-Berlin, 1971 | MR | Zbl
[12] I. Segal, “A non-commutative extension of abstract integration”, Ann. of Math., 57 (1953), 401–457 | DOI | MR | Zbl
[13] A. R. Villena, “Lie derivations on Banach algebras”, J. Algebra, 226 (2000), 390–409 | DOI | MR | Zbl
[14] I. M. Zhuraev, “The structure of Lie derivations of unbounded operator algebras of type I. (Russian)”, Uzbek. Mat. Zh., 1 (2011), 71–77 | MR