Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra
Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 43-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a type I finite von Neumann algebra and let $S(M)$ be the algebra of all measurable operators affiliated with $M$. We prove that every Lie derivation on $S(M)$ has standard form, that is, it is decomposed into the sum of a derivation and a center-valued trace.
@article{DVMG_2013_13_1_a3,
     author = {I. M. Juraev},
     title = {Lie derivations on the algebra of measurable operators affiliated with a type {I} finite von {Neumann} algebra},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/}
}
TY  - JOUR
AU  - I. M. Juraev
TI  - Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2013
SP  - 43
EP  - 51
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/
LA  - ru
ID  - DVMG_2013_13_1_a3
ER  - 
%0 Journal Article
%A I. M. Juraev
%T Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2013
%P 43-51
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/
%G ru
%F DVMG_2013_13_1_a3
I. M. Juraev. Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 43-51. http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/

[1] S. Albeverio, Sh. A. Ayupov, K. K. Kudaybergenov, “Structure of derivations on various algebras of measurable operators for type I von Neumann algebras”, J. Func. Anal., 256 (2009), 2917–2943 | DOI | MR | Zbl

[2] P. Ara, M. Mathieu, Local multipliers of $C^*$-algebras, Springer-Verlag, New York-Heidelberg-Berlin, 2002 | MR

[3] R. Banning, M. Mathieu, “Commutativity preserving mappings on semiprime rings”, Comm. Algebra, 25 (1997), 247–265 | DOI | MR | Zbl

[4] M. Brešar, “Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings”, Trans. Amer. Math. Soc., 335 (1993), 525-546 | DOI | MR | Zbl

[5] H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs, Oxford Press., Oxford., 2000 | MR | Zbl

[6] I. N. Herstein, “Lie and Jordan structures in simple, associative rings”, Bull. Amer. Math. Soc., 67 (1961), 517–531 | DOI | MR | Zbl

[7] B. E. Johnson, “Symmetric amenability and the nonexistence of Lie and Jordan derivatuons”, Math. Proc. Cambridge Philos. Soc., 120 (1996), 455–473 | DOI | MR | Zbl

[8] W. S. Martindale III, “Lie derivations of primitive rings.”, Michigan Math. J., 11 (1964), 183–187 | DOI | MR | Zbl

[9] M. Mathieu, A. R. Villena, “The structure of Lie derivations on $C^*$-algebras”, J. Func. Anal., 202 (2003), 504–525 | DOI | MR | Zbl

[10] C. R. Miers, “Lie derivations of von Neumann algebras”, J. Duke Math., 40 (1973), 403–409 | DOI | MR | Zbl

[11] S. Sakai, $C^*$-algebras and $W^{*}$-algebras, Springer-Verlag, New York-Heidelberg-Berlin, 1971 | MR | Zbl

[12] I. Segal, “A non-commutative extension of abstract integration”, Ann. of Math., 57 (1953), 401–457 | DOI | MR | Zbl

[13] A. R. Villena, “Lie derivations on Banach algebras”, J. Algebra, 226 (2000), 390–409 | DOI | MR | Zbl

[14] I. M. Zhuraev, “The structure of Lie derivations of unbounded operator algebras of type I. (Russian)”, Uzbek. Mat. Zh., 1 (2011), 71–77 | MR