Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra
Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 43-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a type I finite von Neumann algebra and let $S(M)$ be the algebra of all measurable operators affiliated with $M$. We prove that every Lie derivation on $S(M)$ has standard form, that is, it is decomposed into the sum of a derivation and a center-valued trace.
@article{DVMG_2013_13_1_a3,
     author = {I. M. Juraev},
     title = {Lie derivations on the algebra of measurable operators affiliated with a type {I} finite von {Neumann} algebra},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {43--51},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/}
}
TY  - JOUR
AU  - I. M. Juraev
TI  - Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2013
SP  - 43
EP  - 51
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/
LA  - ru
ID  - DVMG_2013_13_1_a3
ER  - 
%0 Journal Article
%A I. M. Juraev
%T Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2013
%P 43-51
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/
%G ru
%F DVMG_2013_13_1_a3
I. M. Juraev. Lie derivations on the algebra of measurable operators affiliated with a type I finite von Neumann algebra. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 43-51. http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a3/