The evolution equation of transverse shock waves in solids
Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 116-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solution of a number of boundary value problems by the method of matched asymptotic expansions for single-wave processes in incompressible nonlinear elastic media is carried out. The frontal area of the wave is defined by the nonlinear evolution equation, which is different from the Cole – Hopf equation. This demonstrates the fundamental differences in the mechanisms of formation and subsequent movement of volume and shear shock waves. The authors propose the inclusion of particular solutions of the evolution equation in the additional parametric method for the determination of the displacement field and medium strains.
@article{DVMG_2013_13_1_a10,
     author = {V. E. Ragozina and Yu. E. Ivanova},
     title = {The evolution equation of transverse shock waves in solids},
     journal = {Dalʹnevosto\v{c}nyj matemati\v{c}eskij \v{z}urnal},
     pages = {116--126},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a10/}
}
TY  - JOUR
AU  - V. E. Ragozina
AU  - Yu. E. Ivanova
TI  - The evolution equation of transverse shock waves in solids
JO  - Dalʹnevostočnyj matematičeskij žurnal
PY  - 2013
SP  - 116
EP  - 126
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a10/
LA  - ru
ID  - DVMG_2013_13_1_a10
ER  - 
%0 Journal Article
%A V. E. Ragozina
%A Yu. E. Ivanova
%T The evolution equation of transverse shock waves in solids
%J Dalʹnevostočnyj matematičeskij žurnal
%D 2013
%P 116-126
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a10/
%G ru
%F DVMG_2013_13_1_a10
V. E. Ragozina; Yu. E. Ivanova. The evolution equation of transverse shock waves in solids. Dalʹnevostočnyj matematičeskij žurnal, Tome 13 (2013) no. 1, pp. 116-126. http://geodesic.mathdoc.fr/item/DVMG_2013_13_1_a10/

[1] A. G. Kulikovskii, E. I. Sveshnikova, Nelineinye volny v uprugikh sredakh, Moskovskii litsei, Moskva, 1998, 412 pp.

[2] A. A. Burenin, A. D. Chernyshov, “Udarnye volny v izotropnom uprugom prostranstve”, Prikl. matematika i mekhanika, 42:4 (1978), 711–717

[3] J. D. Achenbach, D. P. Reddy, “Note of wave propogation in lineary viscoelastic media”, ZAMP, 18:1 (1967), 141–144 | DOI | MR | Zbl

[4] L. A. Babicheva, G. I. Bykovtsev, N. D. Verveiko, “Luchevoi metod resheniya dinamicheskikh zadach v uprugovyazkoplasticheskikh sredakh”, Prikl. matematika i mekhanika, 37:1 (1973), 145–155 | Zbl

[5] M. Van-Daik, Metody vozmuschenii v mekhanike zhidkosti, Mir, Moskva, 1967, 239 pp.

[6] A. A. Burenin, Yu. A. Rossikhin, “K resheniyu odnomernoi zadachi nelineinoi dinamicheskoi teorii uprugosti so strukturnoi udarnoi volnoi”, Prikl. mekhanika, 26:1 (1990), 103–108 | MR | Zbl

[7] Dzh. Uizem, Lineinye i nelineinye volny, Mir, Moskva, 1977, 622 pp. | MR

[8] L. I. Sedov, Mekhanika sploshnoi sredy. T. 1,2. Izd-ie 2-oe ispr. i dopoln., Nauka, Moskva, 1973, T.1. 536 T.2. 584 pp.

[9] T. Tomas, Plasticheskoe techenie i razrushenie v tverdykh telakh, Mir, Moskva, 1964, 308 pp.

[10] Dzh. Koul, Metody vozmuschenii v prikladnoi matematike, Mir, Moskva, 1972, 275 pp. | MR

[11] V. E. Ragozina, Yu. E. Ivanova, “Ob udarnykh osesimmetricheskikh dvizheniyakh neszhimaemoi uprugoi sredy pri udarnykh vozdeistviyakh”, PMTF, 47:6 (2006), 144–151 | MR | Zbl

[12] V. E. Ragozina, I. I. Voronin, E. L. Vekovshinin, “Ob ispolzovanii prifrontovoi asimptotiki v chislennykh resheniyakh dinamicheskikh zadach teorii uprugosti s udarnymi volnami”, Problemy estestvoznaniya i proizvodstva, 1995, no. 115, 25–27

[13] A. A. Burenin, P. V. Zinovev, “K probleme vydeleniya poverkhnostei razryvov v chislennykh metodakh dinamiki deformiruemykh sred”, Problemy mekhaniki. Sbornik statei k 90-letiyu A.Yu. Ishlinskogo, 2003, 146–155